
摘要
我们针对类别增量学习(class incremental learning)这一问题展开研究,该问题被视为实现自适应视觉智能的核心步骤。具体而言,本文考虑在有限记忆资源约束下的增量学习任务,旨在实现更优的稳定性-可塑性权衡。为此,我们提出一种新颖的两阶段学习方法,通过采用动态可扩展的表征结构,实现更高效的增量概念建模。具体而言,在每个增量学习阶段,我们冻结先前已学习的表征,并通过引入一个可学习的新特征提取器,为其扩展额外的特征维度。这一机制使得模型能够在保留已有知识的同时,有效融合新的视觉概念。我们进一步提出一种基于通道级掩码的剪枝策略,根据新概念的复杂程度动态调整表征的扩展规模。此外,我们设计了一种辅助损失函数,以促使模型为新类别学习更具多样性和判别性的特征表示。我们在三个主流的类别增量学习基准数据集上进行了大量实验,结果表明,所提方法在各项指标上均显著优于现有方法,且性能提升幅度明显。
代码仓库
Rhyssiyan/DER-ClassIL.pytorch
官方
pytorch
GitHub 中提及
g-u-n/pycil
pytorch
GitHub 中提及
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| incremental-learning-on-cifar-100-50-classes-2 | DER(Standard ResNet-18) | Average Incremental Accuracy: 72.45 |
| incremental-learning-on-cifar-100-50-classes-2 | DER(Modified ResNet-32) | Average Incremental Accuracy: 66.36 |
| incremental-learning-on-cifar-100-50-classes-3 | DER(Modified Res-32) | Average Incremental Accuracy: 67.60 |
| incremental-learning-on-cifar-100-50-classes-3 | DER(Standard ResNet-18) | Average Incremental Accuracy: 72.60 |
| incremental-learning-on-cifar-100-50-classes-4 | DER (w/o P) | Average Incremental Accuracy: 74.61 |
| incremental-learning-on-cifar-100-b0-5steps | DER(w/o P) | Average Incremental Accuracy: 76.80 |
| incremental-learning-on-cifar100-b0-10steps | DER(ResNet-18) | Average Incremental Accuracy: 74.64 |
| incremental-learning-on-cifar100b020step | DER(ResNet-18) | Average Incremental Accuracy: 73.98 |
| incremental-learning-on-cifar100b050s | DER(ResNet-18) | Average Incremental Accuracy: 72.05 |
| incremental-learning-on-imagenet-10-steps | DER w/o Pruning | # M Params: 116.89 Average Incremental Accuracy: 68.84 Average Incremental Accuracy Top-5: 88.17 Final Accuracy: 60.16 Final Accuracy Top-5: 82.86 |
| incremental-learning-on-imagenet-10-steps | DER | Average Incremental Accuracy: 66.73 Average Incremental Accuracy Top-5: 87.08 Final Accuracy: 58.62 Final Accuracy Top-5: 81.89 |
| incremental-learning-on-imagenet-100-50-2 | DER | Average Incremental Accuracy: 77.73 |
| incremental-learning-on-imagenet100-10-steps | DER | Average Incremental Accuracy: 76.12 Average Incremental Accuracy Top-5: 92.79 Final Accuracy: 66.07 Final Accuracy Top-5: 88.38 |
| incremental-learning-on-imagenet100-10-steps | DER w/o Pruning | # M Params: 112.27 Average Incremental Accuracy: 77.18 Average Incremental Accuracy Top-5: 93.23 Final Accuracy: 66.70 Final Accuracy Top-5: 87.52 |