3 个月前

DER:面向类别增量学习的动态可扩展表示

DER:面向类别增量学习的动态可扩展表示

摘要

我们针对类别增量学习(class incremental learning)这一问题展开研究,该问题被视为实现自适应视觉智能的核心步骤。具体而言,本文考虑在有限记忆资源约束下的增量学习任务,旨在实现更优的稳定性-可塑性权衡。为此,我们提出一种新颖的两阶段学习方法,通过采用动态可扩展的表征结构,实现更高效的增量概念建模。具体而言,在每个增量学习阶段,我们冻结先前已学习的表征,并通过引入一个可学习的新特征提取器,为其扩展额外的特征维度。这一机制使得模型能够在保留已有知识的同时,有效融合新的视觉概念。我们进一步提出一种基于通道级掩码的剪枝策略,根据新概念的复杂程度动态调整表征的扩展规模。此外,我们设计了一种辅助损失函数,以促使模型为新类别学习更具多样性和判别性的特征表示。我们在三个主流的类别增量学习基准数据集上进行了大量实验,结果表明,所提方法在各项指标上均显著优于现有方法,且性能提升幅度明显。

代码仓库

Rhyssiyan/DER-ClassIL.pytorch
官方
pytorch
GitHub 中提及
g-u-n/pycil
pytorch
GitHub 中提及

基准测试

基准方法指标
incremental-learning-on-cifar-100-50-classes-2DER(Standard ResNet-18)
Average Incremental Accuracy: 72.45
incremental-learning-on-cifar-100-50-classes-2DER(Modified ResNet-32)
Average Incremental Accuracy: 66.36
incremental-learning-on-cifar-100-50-classes-3DER(Modified Res-32)
Average Incremental Accuracy: 67.60
incremental-learning-on-cifar-100-50-classes-3DER(Standard ResNet-18)
Average Incremental Accuracy: 72.60
incremental-learning-on-cifar-100-50-classes-4DER (w/o P)
Average Incremental Accuracy: 74.61
incremental-learning-on-cifar-100-b0-5stepsDER(w/o P)
Average Incremental Accuracy: 76.80
incremental-learning-on-cifar100-b0-10stepsDER(ResNet-18)
Average Incremental Accuracy: 74.64
incremental-learning-on-cifar100b020stepDER(ResNet-18)
Average Incremental Accuracy: 73.98
incremental-learning-on-cifar100b050sDER(ResNet-18)
Average Incremental Accuracy: 72.05
incremental-learning-on-imagenet-10-stepsDER w/o Pruning
# M Params: 116.89
Average Incremental Accuracy: 68.84
Average Incremental Accuracy Top-5: 88.17
Final Accuracy: 60.16
Final Accuracy Top-5: 82.86
incremental-learning-on-imagenet-10-stepsDER
Average Incremental Accuracy: 66.73
Average Incremental Accuracy Top-5: 87.08
Final Accuracy: 58.62
Final Accuracy Top-5: 81.89
incremental-learning-on-imagenet-100-50-2DER
Average Incremental Accuracy: 77.73
incremental-learning-on-imagenet100-10-stepsDER
Average Incremental Accuracy: 76.12
Average Incremental Accuracy Top-5: 92.79
Final Accuracy: 66.07
Final Accuracy Top-5: 88.38
incremental-learning-on-imagenet100-10-stepsDER w/o Pruning
# M Params: 112.27
Average Incremental Accuracy: 77.18
Average Incremental Accuracy Top-5: 93.23
Final Accuracy: 66.70
Final Accuracy Top-5: 87.52

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供
DER:面向类别增量学习的动态可扩展表示 | 论文 | HyperAI超神经