3 个月前

基于区域对比的自举语义分割

基于区域对比的自举语义分割

摘要

我们提出 ReCo,一种面向区域级别的对比学习框架,旨在辅助语义分割任务中的模型学习。ReCo 在稀疏的困难负样本像素上执行半监督或监督的像素级对比学习,且仅需极小的额外内存开销。ReCo 实现简单,可基于现成的分割网络进行构建,并在半监督与监督语义分割方法中均能持续提升性能,实现更平滑的分割边界与更快的收敛速度。在标注数据极少的半监督学习场景下,其提升效果最为显著。借助 ReCo,我们仅需每类语义类别5个样本即可训练出高质量的语义分割模型。代码已开源,地址为:https://github.com/lorenmt/reco。

代码仓库

lorenmt/reco
官方
pytorch
GitHub 中提及
dbash/zerowaste
pytorch
GitHub 中提及

基准测试

基准方法指标
semi-supervised-semantic-segmentation-on-1ReCo (DeepLab v3+ with ResNet-101 backbone, ImageNet pretrained)
Validation mIoU: 68.50%
semi-supervised-semantic-segmentation-on-1ReCo (DeepLab v2 with ResNet-101 backbone, ImageNet pretrained)
Validation mIoU: 67.53%
semi-supervised-semantic-segmentation-on-2ReCo (DeepLab v2 with ResNet-101 backbone, ImageNet pretrained)
Validation mIoU: 64.94%
semi-supervised-semantic-segmentation-on-2ReCo (DeepLab v3+ with ResNet-101 backbone, ImageNet pretrained)
Validation mIoU: 66.44%
semi-supervised-semantic-segmentation-on-3ReCo (DeepLab v2 with ResNet-101 backbone, ImageNet pretrained)
Validation mIoU: 56.53%
semi-supervised-semantic-segmentation-on-3ReCo (DeepLab v3+ with ResNet-101 backbone, ImageNet pretrained)
Validation mIoU: 60.28%
semi-supervised-semantic-segmentation-on-4ReCo
Validation mIoU: 71.00%
semi-supervised-semantic-segmentation-on-5ReCo (DeepLab v2 with ResNet-101 backbone, ImageNet pretrained)
Validation mIoU: 68.85%
semi-supervised-semantic-segmentation-on-5ReCo (DeepLab v3+ with ResNet-101 backbone, ImageNet pretrained)
Validation mIoU: 73.66%
semi-supervised-semantic-segmentation-on-6ReCo (DeepLab v3+ with ResNet-101 backbone, ImageNet pretrained)
Validation mIoU: 72.14%
semi-supervised-semantic-segmentation-on-6ReCo (DeepLab v2 with ResNet-101 backbone, ImageNet pretrained)
Validation mIoU: 66.41%
semi-supervised-semantic-segmentation-on-7ReCo (DeepLab v3+ with ResNet-101 backbone, ImageNet pre-trained)
Validation mIoU: 63.60%
semi-supervised-semantic-segmentation-on-7ReCo (DeepLab v2 with ResNet-101 backbone, ImageNet pre-trained)
Validation mIoU: 63.16%
semi-supervised-semantic-segmentation-on-8ReCo (DeepLab v2 with ResNet-101 backbone, ImageNet pretrained)
Validation mIoU: 68.69%

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供
基于区域对比的自举语义分割 | 论文 | HyperAI超神经