
摘要
图神经网络(GNNs)已在许多结构化数据领域成功应用,其应用范围从分子性质预测到社交网络分析。受GNN广泛适用性的启发,我们提出了一类所谓的RankGNNs,这是神经学习排序(Learning to Rank, LtR)方法与GNN的结合体。RankGNNs通过一组图之间的成对偏好进行训练,表明其中一个图比另一个更受青睐。这一问题的一个实际应用是药物筛选,专家希望在大量候选药物中找到最有潜力的分子。我们通过实验证明,所提出的成对RankGNN方法要么显著优于或至少与基于点的基线方法的排名性能相当,后者通过基于GNN的图回归解决LtR问题。
代码仓库
Cortys/rankgnn
官方
tf
GitHub 中提及
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| graph-ranking-on-ogbg-molesol | 2-WL-GNN + DirectRanker | Kendall's Tau: 0.745 |
| graph-ranking-on-ogbg-molesol | 2-WL-GNN + Utility Regression | Kendall's Tau: 0.747 |
| graph-ranking-on-ogbg-molesol | 2-WL-GNN + Rank Regression | Kendall's Tau: 0.720 |
| graph-ranking-on-ogbg-molesol | 2-WL-GNN + CmpNN | Kendall's Tau: 0.718 |
| graph-ranking-on-ogbg-molfreesolv | 2-WL-GNN + Utility Regression | Kendall's Tau: 0.379 |
| graph-ranking-on-ogbg-molfreesolv | 2-WL-GNN + DirectRanker | Kendall's Tau: 0.525 |
| graph-ranking-on-ogbg-molfreesolv | 2-WL-GNN + Rank Regression | Kendall's Tau: 0.524 |
| graph-ranking-on-ogbg-molfreesolv | 2-WL-GNN + CmpNN | Kendall's Tau: 0.527 |
| graph-ranking-on-ogbg-mollipo | 2-WL-GNN + Rank Regression | Kendall's Tau: 0.332 |
| graph-ranking-on-ogbg-mollipo | 2-WL-GNN + CmpNN | Kendall's Tau: 0.503 |
| graph-ranking-on-ogbg-mollipo | 2-WL-GNN + Utility Regression | Kendall's Tau: 0.318 |
| graph-ranking-on-ogbg-mollipo | 2-WL-GNN + DirectRanker | Kendall's Tau: 0.505 |
| graph-ranking-on-zinc | 2-WL-GNN + DirectRanker | Kendall's Tau: 0.894 |
| graph-ranking-on-zinc | 2-WL-GNN + Rank Regression | Kendall's Tau: 0.810 |
| graph-ranking-on-zinc | 2-WL-GNN + Utility Regression | Kendall's Tau: 0.803 |
| graph-ranking-on-zinc | 2-WL-GNN + CmpNN | Kendall's Tau: 0.873 |