3 个月前

ResMLP:用于图像分类的前馈网络及数据高效训练

ResMLP:用于图像分类的前馈网络及数据高效训练

摘要

我们提出ResMLP,一种完全基于多层感知机(MLP)构建的图像分类架构。该模型是一种结构简洁的残差网络,其核心机制交替执行以下两个步骤:(i)一个线性层,使图像块在各通道间独立且同等地进行交互;(ii)一个两层前馈网络,使各通道在每个图像块内部独立地进行交互。在采用现代训练策略(包括大规模数据增强,以及可选的知识蒸馏)进行训练时,ResMLP在ImageNet数据集上实现了令人惊喜的准确率与模型复杂度之间的良好权衡。此外,我们还在自监督学习设置下训练了ResMLP模型,以进一步减少对标注数据集的依赖。最后,通过将该模型适配至机器翻译任务,我们取得了令人惊讶的优异表现。我们已基于Timm库开源了预训练模型及全部代码。

基准测试

基准方法指标
fine-grained-image-classification-on-oxfordResMLP-12
Accuracy: 97.4%
fine-grained-image-classification-on-oxfordResMLP-24
Accuracy: 97.9%
fine-grained-image-classification-on-stanfordResMLP-12
Accuracy: 84.6%
fine-grained-image-classification-on-stanfordResMLP-24
Accuracy: 89.5%
image-classification-on-certificateResMLP-24
Percentage correct: 98.7
Top-1 Accuracy: 98.7
image-classification-on-certificateResMLP-12
Percentage correct: 98.1
Top-1 Accuracy: 98.1
image-classification-on-cifar-100ResMLP-24
Percentage correct: 89.5
image-classification-on-cifar-100ResMLP-12
Percentage correct: 87.0
image-classification-on-flowers-102ResMLP12
Accuracy: 97.4
image-classification-on-flowers-102ResMLP24
Accuracy: 97.9
image-classification-on-imagenetResMLP-12 (distilled, class-MLP)
GFLOPs: 3
Number of params: 17.7M
Top 1 Accuracy: 78.6%
image-classification-on-imagenetResMLP-24
Top 1 Accuracy: 79.4%
image-classification-on-imagenetResMLP-S12
Number of params: 15.4M
Top 1 Accuracy: 77.8%
image-classification-on-imagenetResMLP-36
Number of params: 45M
Top 1 Accuracy: 79.7%
image-classification-on-imagenetResMLP-S24
GFLOPs: 6
Number of params: 30M
Top 1 Accuracy: 80.8%
image-classification-on-imagenetResMLP-B24/8
Number of params: 116M
Top 1 Accuracy: 83.6%
image-classification-on-imagenet-realResMLP-36
Accuracy: 85.6%
Params: 45M
image-classification-on-imagenet-realResMLP-B24/8 (22k)
Top 1 Accuracy: 84.4%
image-classification-on-imagenet-realResMLP-12
Accuracy: 84.6%
Params: 15M
image-classification-on-imagenet-realResMLP-24
Accuracy: 85.3%
Params: 30M
image-classification-on-imagenet-v2ResMLP-S24/16
Top 1 Accuracy: 69.8
image-classification-on-imagenet-v2ResMLP-S12/16
Top 1 Accuracy: 66.0
image-classification-on-imagenet-v2ResMLP-B24/8
Top 1 Accuracy: 73.4
image-classification-on-imagenet-v2ResMLP-B24/8 22k
Top 1 Accuracy: 74.2
image-classification-on-inaturalist-2018ResMLP-24
Top-1 Accuracy: 64.3
image-classification-on-inaturalist-2018ResMLP-12
Top-1 Accuracy: 60.2
image-classification-on-inaturalist-2019ResMLP-12
Top-1 Accuracy: 71.0
image-classification-on-inaturalist-2019ResMLP-24
Top-1 Accuracy: 72.5
image-classification-on-stanford-carsResMLP-12
Accuracy: 84.6
image-classification-on-stanford-carsResMLP-24
Accuracy: 89.5
machine-translation-on-wmt2014-english-frenchResMLP-12
BLEU score: 40.6
machine-translation-on-wmt2014-english-frenchResMLP-6
BLEU score: 40.3
machine-translation-on-wmt2014-english-germanResMLP-6
BLEU score: 26.4
machine-translation-on-wmt2014-english-germanResMLP-12
BLEU score: 26.8
self-supervised-image-classification-onDINO (ResMLP-24)
Number of Params: 30M
Top 1 Accuracy: 72.8%
self-supervised-image-classification-onDINO (ResMLP-12)
Number of Params: 15M
Top 1 Accuracy: 67.5%

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供
ResMLP:用于图像分类的前馈网络及数据高效训练 | 论文 | HyperAI超神经