
摘要
一个有效的三维描述符应当对不同的几何变换(如尺度和旋转)具有不变性,对遮挡和杂乱环境具有鲁棒性,并且能够在不同的应用领域中进行泛化。本文提出了一种简单而有效的方法,用于学习通用且独特的三维局部描述符,这些描述符可以用于在不同领域捕获的点云配准。点云补丁被提取出来,并根据其局部参考框架进行规范化处理,然后通过一个对输入点排列不变的深度神经网络编码为尺度和旋转不变的紧凑描述符。这种设计使得我们的描述符能够在不同领域之间实现泛化。我们使用多个室内和室外数据集对所提出的描述符进行了评估和比较,这些数据集既使用了RGBD传感器也使用了激光扫描仪进行重建。实验结果表明,我们的描述符在泛化能力方面显著优于大多数最近的描述符,并且在训练和测试在同一领域进行的基准测试中达到了最先进的水平。
代码仓库
fabiopoiesi/gedi
官方
pytorch
GitHub 中提及
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| point-cloud-registration-on-3dmatch-benchmark | GeDi (no code published as of May 27 2021) | Feature Matching Recall: 97.9 |
| point-cloud-registration-on-3dmatch-trained | GeDi | Recall: 0.922 |
| point-cloud-registration-on-eth-trained-on | GeDi | Feature Matching Recall: 0.982 Recall (30cm, 5 degrees): 86.54 |
| point-cloud-registration-on-fp-o-e | GeDi | RRE (degrees): 1.69 RTE (cm): 1.16 Recall (3cm, 10 degrees): 99.64 |
| point-cloud-registration-on-fp-o-h | GeDi | RRE (degrees): 2.56 RTE (cm): 1.76 Recall (3cm, 10 degrees): 8.70 |
| point-cloud-registration-on-fp-o-m | GeDi | RRE (degrees): 2.14 RTE (cm): 1.45 Recall (3cm, 10 degrees): 75.40 |
| point-cloud-registration-on-fp-r-e | GeDi | RRE (degrees): 1.629 RTE (cm): 1.162 Recall (3cm, 10 degrees): 99.76 |
| point-cloud-registration-on-fp-r-h | GeDi | RRE (degrees): 1.70 RTE (cm): 1.63 Recall (3cm, 10 degrees): 99.41 |
| point-cloud-registration-on-fp-r-m | GeDi | RRE (degrees): 1.66 RTE (cm): 1.14 Recall (3cm, 10 degrees): 99.94 |
| point-cloud-registration-on-fp-t-e | GeDi | RRE (degrees): 1.68 RTE (cm): 1.16 Recall (3cm, 10 degrees): 99.47 |
| point-cloud-registration-on-fp-t-h | GeDi | RRE (degrees): 1.63 RTE (cm): 1.14 Recall (3cm, 10 degrees): 99.70 |
| point-cloud-registration-on-fp-t-m | GeDi | RRE (degrees): 1.65 RTE (cm): 1.15 Recall (3cm, 10 degrees): 99.70 |
| point-cloud-registration-on-kitti | GeDi | Success Rate: 99.82 |
| point-cloud-registration-on-kitti-trained-on | GeDi | Success Rate: 98.92 |