3 个月前

通过对比链接提炼自知识以实现无需消息传递的图节点分类

通过对比链接提炼自知识以实现无需消息传递的图节点分类

摘要

如今,遵循消息传递(Message Passing)范式的图神经网络(Graph Neural Networks, GNNs)已成为处理图数据学习任务的主流方法。然而,这类模型需依赖邻接矩阵查找邻接节点,额外占用存储空间,并在聚合多个邻接节点消息时引入额外计算开销。为解决这一问题,我们提出一种名为LinkDist的新方法,该方法将连接节点对之间的自知识(self-knowledge)提炼至多层感知机(Multi-Layer Perceptron, MLP)中,无需进行消息聚合操作。在8个真实世界数据集上的实验表明,由LinkDist生成的MLP模型在不依赖节点邻接信息的情况下,仍能准确预测节点标签,且在半监督与全监督节点分类任务中,性能可与主流GNN模型相媲美。此外,得益于其非消息传递的范式,LinkDist还可通过对比学习的方式,从任意采样的节点对中进一步提炼自知识,从而持续提升模型性能。

代码仓库

cf020031308/LinkDist
官方
pytorch
GitHub 中提及

基准测试

基准方法指标
node-classification-on-amazon-computers-1CoLinkDistMLP
Accuracy: 88.85%
node-classification-on-amazon-computers-1CoLinkDist
Accuracy: 89.42%
node-classification-on-amazon-computers-1LinkDist
Accuracy: 89.49%
node-classification-on-amazon-computers-1LinkDistMLP
Accuracy: 89.44%
node-classification-on-amazon-photo-1CoLinkDist
Accuracy: 94.36%
node-classification-on-amazon-photo-1CoLinkDistMLP
Accuracy: 94.12%
node-classification-on-amazon-photo-1LinkDist
Accuracy: 93.75%
node-classification-on-amazon-photo-1LinkDistMLP
Accuracy: 93.83%
node-classification-on-citeseerCoLinkDist
Accuracy: 75.79%
node-classification-on-citeseerLinkDist
Accuracy: 74.72%
node-classification-on-citeseerCoLinkDistMLP
Accuracy: 75.77%
node-classification-on-citeseerLinkDistMLP
Accuracy: 75.25%
node-classification-on-citeseer-with-publicLinkDist
Accuracy: 70.27%
node-classification-on-citeseer-with-publicCoLinkDist
Accuracy: 70.79%
node-classification-on-citeseer-with-publicCoLinkDistMLP
Accuracy: 70.96%
node-classification-on-citeseer-with-publicLinkDistMLP
Accuracy: 70.26%
node-classification-on-coauthor-csLinkDistMLP
Accuracy: 95.68%
node-classification-on-coauthor-csLinkDist
Accuracy: 95.66%
node-classification-on-coauthor-csCoLinkDist
Accuracy: 95.80%
node-classification-on-coauthor-csCoLinkDistMLP
Accuracy: 95.74%
node-classification-on-coauthor-physicsLinkDist
Accuracy: 96.87%
node-classification-on-coauthor-physicsCoLinkDist
Accuracy: 97.05%
node-classification-on-coauthor-physicsCoLinkDistMLP
Accuracy: 96.87%
node-classification-on-coauthor-physicsLinkDistMLP
Accuracy: 96.91%
node-classification-on-coraLinkDist
Accuracy: 88.24%
node-classification-on-coraLinkDistMLP
Accuracy: 87.58%
node-classification-on-coraCoLinkDistMLP
Accuracy: 87.54%
node-classification-on-coraCoLinkDist
Accuracy: 87.89%
node-classification-on-cora-fullLinkDistMLP
Accuracy: 69.53%
node-classification-on-cora-fullLinkDist
Accuracy: 69.87%
node-classification-on-cora-fullCoLinkDistMLP
Accuracy: 69.83%
node-classification-on-cora-fullCoLinkDist
Accuracy: 70.32%
node-classification-on-cora-full-with-publicCoLinkDist
Accuracy: 57.05%
node-classification-on-cora-full-with-publicCoLinkDistMLP
Accuracy: 53.43%
node-classification-on-cora-full-with-publicLinkDistMLP
Accuracy: 51.78%
node-classification-on-cora-full-with-publicLinkDist
Accuracy: 55.87%
node-classification-on-cora-with-public-splitCoLinkDistMLP
Accuracy: 81.19%
node-classification-on-cora-with-public-splitLinkDistMLP
Accuracy: 80.79%
node-classification-on-cora-with-public-splitCoLinkDist
Accuracy: 81.39%
node-classification-on-cora-with-public-splitLinkDist
Accuracy: 81.05%
node-classification-on-pubmedLinkDist
Accuracy: 88.86%
node-classification-on-pubmedLinkDistMLP
Accuracy: 88.79%
node-classification-on-pubmedCoLinkDist
Accuracy: 89.58%
node-classification-on-pubmedCoLinkDistMLP
Accuracy: 89.53%
node-classification-on-pubmed-with-publicLinkDistMLP
Accuracy: 72.41%
node-classification-on-pubmed-with-publicCoLinkDistMLP
Accuracy: 75.41%
node-classification-on-pubmed-with-publicLinkDist
Accuracy: 74.06%
node-classification-on-pubmed-with-publicCoLinkDist
Accuracy: 75.64%

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供
通过对比链接提炼自知识以实现无需消息传递的图节点分类 | 论文 | HyperAI超神经