
摘要
随着视觉与文本表示联合建模技术的最新进展,视觉-语言预训练(Vision-Language Pretraining, VLP)在众多多模态下游任务中取得了令人瞩目的性能表现。然而,现有方法对昂贵标注数据的依赖——包括清晰的图像标题和区域标签——严重限制了其可扩展性,并因引入多个数据集特异性目标而使预训练过程变得复杂。针对这一问题,本文提出一种简约化的预训练框架——简单视觉语言模型(Simple Visual Language Model, SimVLM),有效缓解了上述限制。与以往方法不同,SimVLM通过利用大规模弱监督信号降低训练复杂度,并采用单一前缀语言建模目标实现端到端训练。该模型无需额外数据或任务特定的定制化设计,即可显著超越以往预训练方法,在广泛的判别性与生成性视觉-语言基准任务上取得新的最先进性能,涵盖视觉问答(VQA,提升3.74%的VQA得分)、NLVR2(准确率提升1.17%)、SNLI-VE(准确率提升1.37%)以及图像字幕生成任务(平均CIDEr得分提升10.1%)。此外,我们进一步验证了SimVLM具备强大的泛化能力与迁移能力,能够实现零样本推理,包括开放式视觉问答和跨模态迁移等任务。
代码仓库
yulong-XJTU/SimVLM
pytorch
GitHub 中提及
FerryHuang/SimVLM
pytorch
GitHub 中提及
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| image-captioning-on-coco-captions | SimVLM | BLEU-4: 40.6 CIDER: 143.3 METEOR: 33.4 SPICE: 25.4 |
| image-captioning-on-nocaps-entire | Single Model | B1: 83.78 B2: 68.86 B3: 51.06 B4: 32.2 CIDEr: 110.31 METEOR: 30.55 ROUGE-L: 59.86 SPICE: 14.49 |
| image-captioning-on-nocaps-in-domain | Single Model | B1: 84.64 B2: 70.0 B3: 52.96 B4: 34.66 CIDEr: 108.98 METEOR: 31.97 ROUGE-L: 61.01 SPICE: 14.6 |
| image-captioning-on-nocaps-near-domain | Single Model | B1: 84.36 B2: 69.83 B3: 52.42 B4: 33.74 CIDEr: 110.76 METEOR: 30.97 ROUGE-L: 60.46 SPICE: 14.61 |
| image-captioning-on-nocaps-out-of-domain | Single Model | B1: 80.89 B2: 64.21 B3: 44.38 B4: 24.47 CIDEr: 109.49 METEOR: 27.91 ROUGE-L: 56.69 SPICE: 13.89 |
| image-captioning-on-nocaps-val-in-domain | SimVLM | CIDEr: 113.7 Pre-train (#images): 1.8B SPICE: - |
| image-captioning-on-nocaps-val-near-domain | SimVLM | CIDEr: 110.9 Pre-train (#images): 1.8B SPICE: - |
| image-captioning-on-nocaps-val-out-domain | SimVLM | CIDEr: 115.2 Pretrain (#images): 1.8B SPICE: - |
| image-captioning-on-nocaps-val-overall | SimVLM | CIDEr: 112.2 Pretrain (#images): 1.8B SPICE: - |
| visual-entailment-on-snli-ve-test | SimVLM | Accuracy: 86.32 |
| visual-entailment-on-snli-ve-val | SimVLM | Accuracy: 86.21 |
| visual-question-answering-on-vqa-v2-test-dev | SimVLM | Accuracy: 80.03 |
| visual-question-answering-on-vqa-v2-test-std | SimVLM | overall: 80.34 |
| visual-reasoning-on-nlvr2-dev | SimVLM | Accuracy: 84.53 |
| visual-reasoning-on-nlvr2-test | SimVLM | Accuracy: 85.15 |