
摘要
在仅有少量标记数据可用的情况下,利用深度神经网络进行高效的数据图像分类一直是近年来的研究热点。然而,由于现有研究使用不同的数据集进行评估,并且经常与默认超参数设置的基线方法进行比较,因此对已发表的方法进行客观对比较为困难。为此,我们设计了一个涵盖六个不同领域的数据集(例如自然图像、医学影像、卫星数据)和多种数据类型(RGB、灰度、多光谱)的数据高效图像分类基准测试。通过该基准测试,我们重新评估了标准交叉熵基线以及2017年至2021年间在知名会议和期刊上发表的八种数据高效深度学习方法。为了实现公平和现实的对比,我们在每个数据集上仔细调整了所有方法的超参数。令人惊讶的是,我们发现仅通过在一个独立验证集上调整学习率、权重衰减和批量大小,就能得到一个极具竞争力的基线模型,该模型除了一种专门方法外,均优于其他所有方法,并且与剩下的那种方法表现相当。
代码仓库
cvjena/deic
官方
pytorch
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| small-data-image-classification-on-cifair-10-1 | Harmonic Networks | Accuracy: 56.50 |
| small-data-image-classification-on-cifair-10-1 | Cross-entropy baseline | Accuracy: 58.22 |
| small-data-image-classification-on-cifair-10-1 | T-vMF Similarity | Accuracy: 57.50 |
| small-data-image-classification-on-deic | Cross-Entropy baseline | Average Balanced Accuracy (across datasets): 67.90 |
| small-data-image-classification-on-deic | T-vMF Similarity | Average Balanced Accuracy (across datasets): 64.67 |
| small-data-image-classification-on-deic | Deep Hybrid Networks | Average Balanced Accuracy (across datasets): 60.33 |
| small-data-image-classification-on-deic | OLÉ | Average Balanced Accuracy (across datasets): 64.15 |
| small-data-image-classification-on-deic | Harmonic Networks | Average Balanced Accuracy (across datasets): 68.70 |
| small-data-image-classification-on-deic | Cosine Loss | Average Balanced Accuracy (across datasets): 62.73 |
| small-data-image-classification-on-deic | DSK Networks | Average Balanced Accuracy (across datasets): 64.64 |
| small-data-image-classification-on-deic | Full Convolution | Average Balanced Accuracy (across datasets): 62.06 |
| small-data-image-classification-on-deic | Grad-l2 Penalty | Average Balanced Accuracy (across datasets): 55.47 |
| small-data-image-classification-on-deic | Cosine + Cross-Entropy Loss | Average Balanced Accuracy (across datasets): 64.92 |
| small-data-image-classification-on-eurosat-50 | DSK Networks | Accuracy: 91.25 |
| small-data-image-classification-on-eurosat-50 | Harmonic Networks | Accuracy: 92.09 |
| small-data-image-classification-on-eurosat-50 | Deep Hybrid Networks | Accuracy: 91.15 |
| small-data-image-classification-on-imagenet | Cross-entropy baseline | 1:1 Accuracy: 44.97 |
| small-data-image-classification-on-imagenet | Harmonic Networks | 1:1 Accuracy: 46.36 |
| small-data-image-classification-on-imagenet | DSK Networks | 1:1 Accuracy: 45.21 |
| small-data-on-cub-200-2011-30-samples-per-1 | Harmonic Networks (no pre-training) | Accuracy: 72.26 |
| small-data-on-cub-200-2011-30-samples-per-1 | Cross-entropy baseline (no pre-training) | Accuracy: 71.44 |
| small-data-on-cub-200-2011-30-samples-per-1 | DSK Networks (no pre-training) | Accuracy: 71.02 |