4 个月前

调参或不用:数据高效图像分类基准测试

调参或不用:数据高效图像分类基准测试

摘要

在仅有少量标记数据可用的情况下,利用深度神经网络进行高效的数据图像分类一直是近年来的研究热点。然而,由于现有研究使用不同的数据集进行评估,并且经常与默认超参数设置的基线方法进行比较,因此对已发表的方法进行客观对比较为困难。为此,我们设计了一个涵盖六个不同领域的数据集(例如自然图像、医学影像、卫星数据)和多种数据类型(RGB、灰度、多光谱)的数据高效图像分类基准测试。通过该基准测试,我们重新评估了标准交叉熵基线以及2017年至2021年间在知名会议和期刊上发表的八种数据高效深度学习方法。为了实现公平和现实的对比,我们在每个数据集上仔细调整了所有方法的超参数。令人惊讶的是,我们发现仅通过在一个独立验证集上调整学习率、权重衰减和批量大小,就能得到一个极具竞争力的基线模型,该模型除了一种专门方法外,均优于其他所有方法,并且与剩下的那种方法表现相当。

代码仓库

cvjena/deic
官方
pytorch

基准测试

基准方法指标
small-data-image-classification-on-cifair-10-1 Harmonic Networks
Accuracy: 56.50
small-data-image-classification-on-cifair-10-1Cross-entropy baseline
Accuracy: 58.22
small-data-image-classification-on-cifair-10-1T-vMF Similarity
Accuracy: 57.50
small-data-image-classification-on-deicCross-Entropy baseline
Average Balanced Accuracy (across datasets): 67.90
small-data-image-classification-on-deicT-vMF Similarity
Average Balanced Accuracy (across datasets): 64.67
small-data-image-classification-on-deicDeep Hybrid Networks
Average Balanced Accuracy (across datasets): 60.33
small-data-image-classification-on-deicOLÉ
Average Balanced Accuracy (across datasets): 64.15
small-data-image-classification-on-deicHarmonic Networks
Average Balanced Accuracy (across datasets): 68.70
small-data-image-classification-on-deicCosine Loss
Average Balanced Accuracy (across datasets): 62.73
small-data-image-classification-on-deicDSK Networks
Average Balanced Accuracy (across datasets): 64.64
small-data-image-classification-on-deicFull Convolution
Average Balanced Accuracy (across datasets): 62.06
small-data-image-classification-on-deicGrad-l2 Penalty
Average Balanced Accuracy (across datasets): 55.47
small-data-image-classification-on-deicCosine + Cross-Entropy Loss
Average Balanced Accuracy (across datasets): 64.92
small-data-image-classification-on-eurosat-50DSK Networks
Accuracy: 91.25
small-data-image-classification-on-eurosat-50Harmonic Networks
Accuracy: 92.09
small-data-image-classification-on-eurosat-50Deep Hybrid Networks
Accuracy: 91.15
small-data-image-classification-on-imagenetCross-entropy baseline
1:1 Accuracy: 44.97
small-data-image-classification-on-imagenetHarmonic Networks
1:1 Accuracy: 46.36
small-data-image-classification-on-imagenetDSK Networks
1:1 Accuracy: 45.21
small-data-on-cub-200-2011-30-samples-per-1Harmonic Networks (no pre-training)
Accuracy: 72.26
small-data-on-cub-200-2011-30-samples-per-1Cross-entropy baseline (no pre-training)
Accuracy: 71.44
small-data-on-cub-200-2011-30-samples-per-1DSK Networks (no pre-training)
Accuracy: 71.02

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供
调参或不用:数据高效图像分类基准测试 | 论文 | HyperAI超神经