
摘要
基于多层感知机(MLP)的架构由一系列连续的多层感知机模块构成,近期研究发现其性能可与基于卷积神经网络(CNN)和Transformer的模型相媲美。然而,大多数现有方法采用固定维度输入的空间MLP结构,导致难以直接应用于目标检测、语义分割等下游视觉任务。此外,单阶段设计进一步限制了其在其他计算机视觉任务中的表现,而全连接层带来的计算开销也较为沉重。为解决上述问题,本文提出ConvMLP:一种面向视觉识别的分层卷积型MLP架构,该架构在轻量化、分阶段设计的基础上,实现了卷积层与MLP的协同优化。具体而言,ConvMLP-S在ImageNet-1k数据集上取得了76.8%的Top-1准确率,仅需900万参数和2.4G MACs,分别仅为MLP-Mixer-B/16的15%和19%。在目标检测与语义分割任务上的实验进一步表明,ConvMLP所学习到的视觉表征可实现无缝迁移,并在参数更少的情况下达到具有竞争力的性能。本文代码与预训练模型已开源,地址为:https://github.com/SHI-Labs/Convolutional-MLPs。
代码仓库
SHI-Labs/Convolutional-MLPs
官方
pytorch
GitHub 中提及
liuruiyang98/Jittor-MLP
jax
GitHub 中提及
shinya7y/UniverseNet
pytorch
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| image-classification-on-cifar-10 | ConvMLP-M | Percentage correct: 98.6 |
| image-classification-on-cifar-10 | ConvMLP-S | Percentage correct: 98 |
| image-classification-on-cifar-10 | ConvMLP-L | Percentage correct: 98.6 |
| image-classification-on-cifar-100 | ConvMLP-M | Percentage correct: 89.1 |
| image-classification-on-cifar-100 | ConvMLP-S | Percentage correct: 87.4 |
| image-classification-on-cifar-100 | ConvMLP-L | Percentage correct: 88.6 |
| image-classification-on-flowers-102 | ConvMLP-S | Accuracy: 99.5 |
| image-classification-on-flowers-102 | ConvMLP-L | Accuracy: 99.5 |
| image-classification-on-imagenet | ConvMLP-L | Number of params: 42.7M Top 1 Accuracy: 80.2% |
| image-classification-on-imagenet | ConvMLP-S | Number of params: 9M Top 1 Accuracy: 76.8 |
| image-classification-on-imagenet | ConvMLP-M | Number of params: 17.4M Top 1 Accuracy: 79% |
| semantic-segmentation-on-ade20k | ConvMLP-S | Validation mIoU: 35.8 |
| semantic-segmentation-on-ade20k | ConvMLP-M | Validation mIoU: 38.6 |
| semantic-segmentation-on-ade20k | ConvMLP-L | Validation mIoU: 40 |