
摘要
图神经网络(Graph Neural Networks, GNNs)通过引入基于关系归纳偏置(同质性假设)的图结构,扩展了传统神经网络(Neural Networks, NNs)的能力。尽管GNNs在实际任务中被认为优于不考虑图结构的NNs,但其相对于图无关的NNs在性能上的提升并不总是显著。异质性(heterophily)被认为是导致这一现象的主要原因,为此已有大量研究致力于缓解该问题。本文首先指出,并非所有异质性情形都会对具有聚合操作的GNNs产生负面影响。随后,我们提出了一种基于相似性矩阵的新度量方法,该方法综合考虑了图结构与输入特征对GNN性能的共同影响。在合成图上的实验表明,该度量方法相较于常用的同质性度量具有更优的表现。基于新度量结果与实际观察,我们发现某些有害的异质性情形可通过引入多样化操作(diversification operation)加以缓解。结合这一发现与滤波器组(filterbank)的相关知识,本文进一步提出自适应通道混合(Adaptive Channel Mixing, ACM)框架,该框架能够在每一层GNN中自适应地融合聚合、多样化与恒等映射(identity)三种通道机制,以有效应对有害异质性。我们在10个真实世界的节点分类任务上对ACM增强的基线模型进行了验证,结果表明,ACM在不带来显著计算开销的前提下,持续实现了显著的性能提升,并在多数任务上超越了当前最先进的GNN模型。
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| node-classification-on-citeseer | ACMII-Snowball-3 | Accuracy: 81.56 ± 1.15 |
| node-classification-on-citeseer | ACM-Snowball-2 | Accuracy: 81.58 ± 1.23 |
| node-classification-on-citeseer | ACM-GCN | Accuracy: 81.68 ± 0.97 |
| node-classification-on-citeseer | ACMII-Snowball-2 | Accuracy: 82.07 ± 1.04 |
| node-classification-on-cora | ACMII-GCN | Accuracy: 88.95% ± 1.04% |
| node-classification-on-cora | ACMII-Snowball-3 | Accuracy: 89.36% ± 1.26% |
| node-classification-on-cora | ACM-GCN | Accuracy: 88.62% ± 1.22% |
| node-classification-on-cora | ACM-Snowball-2 | Accuracy: 88.83% ± 1.49% |
| node-classification-on-pubmed | ACM-GCN | Accuracy: 90.74 ± 0.5 |
| node-classification-on-pubmed | ACMII-Snowball-3 | Accuracy: 91.31 ± 0.6 |
| node-classification-on-pubmed | ACMII-Snowball-2 | Accuracy: 90.56 ± 0.39 |