
摘要
尽管共指消解任务在定义上与数据集领域无关,但大多数现有的共指消解模型在未见领域上的泛化能力较差。为此,我们整合了8个针对不同领域的共指消解数据集,用于评估现有模型在“开箱即用”情况下的性能表现。随后,我们选取其中三个数据集进行联合训练;尽管这些数据集在领域、标注规范和元数据方面存在差异,我们提出一种方法,通过数据增强来应对标注差异,并结合采样策略平衡各类数据的样本数量,从而实现对异构数据混合体的联合训练。实验结果表明,在零样本(zero-shot)设置下,仅在单一数据集上训练的模型泛化性能较差,而联合训练显著提升了整体性能,从而增强了共指消解模型的泛化能力。本研究构建了一个新的基准数据集,用于评估鲁棒的共指消解模型,并取得了多项新的最先进(state-of-the-art)结果。
代码仓库
shtoshni/fast-coref
pytorch
GitHub 中提及
shtoshni92/fast-coref
官方
pytorch
GitHub 中提及
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| coreference-resolution-on-litbank | longdoc S (OntoNotes + PreCo + LitBank) | F1: 78.2 |
| coreference-resolution-on-ontonotes | longdoc S (ON + PreCo + LitBank + 30k pseudo-singletons) | F1: 79.6 |
| coreference-resolution-on-ontonotes | longdoc S (OntoNotes + 60k pseudo-singletons) | F1: 80.6 |
| coreference-resolution-on-ontonotes | longdoc S (OntoNotes + PreCo + LitBank) | F1: 79.2 |
| coreference-resolution-on-preco | longdoc S (OntoNotes + PreCo + LitBank) | F1: 87.6 |
| coreference-resolution-on-quizbowl | longdoc S (OntoNotes + PreCo + LitBank) | F1: 42.9 |
| coreference-resolution-on-wikicoref | longdoc S (ON + PreCo + LitBank + 30k pseudo-singletons) | F1: 62.5 |
| coreference-resolution-on-wikicoref | longdoc S (OntoNotes + PreCo + LitBank) | F1: 60.3 |
| coreference-resolution-on-winograd-schema | longdoc S (OntoNotes + PreCo + LitBank) | Accuracy: 60.1 |
| coreference-resolution-on-winograd-schema | longdoc S (ON + PreCo + LitBank + 30k pseudo-singletons) | Accuracy: 59.4 |