
摘要
基于形状片段(shapelet)的算法因其良好的可解释性,被广泛应用于时间序列分类任务中。然而,当前这类方法的性能已被最新的先进方法超越。本文提出了一种新的时间序列形状片段建模方式,引入了“膨胀”(dilation)概念,并设计了一种新型形状片段特征,以增强其在分类任务中的判别能力。在112个数据集上的实验结果表明,所提方法在性能上优于现有的最先进形状片段算法,同时达到了与最新前沿方法相当的分类准确率,且在保持可扩展性与可解释性的前提下,未造成任何性能妥协。
代码仓库
baraline/convst
官方
GitHub 中提及
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| time-series-classification-on-acsf1 | R_DST_Ensemble | Accuracy(30-fold): 0.8433333333333333 |
| time-series-classification-on-adiac | R_DST_Ensemble | Accuracy(30-fold): 0.80230179028133 |
| time-series-classification-on-arrowhead | R_DST_Ensemble | Accuracy(30-fold): 0.8912380952380949 |
| time-series-classification-on-beef | R_DST_Ensemble | Accuracy(30-fold): 0.7511111111111111 |
| time-series-classification-on-earthquakes | R_DST_Ensemble | Accuracy(30-fold): 0.7390887290167865 |
| time-series-classification-on-ecg200 | R_DST_Ensemble | Accuracy(30-fold): 0.9016666666666667 |
| time-series-classification-on-ecg5000 | R_DST_Ensemble | Accuracy(30-fold): 0.9467629629629628 |
| time-series-classification-on-wafer | R_DST_Ensemble | Accuracy: 0.9999513303049968 Accuracy(30-fold): 0.9999513303049968 |