4 个月前

面向灵活的盲JPEG伪影去除

面向灵活的盲JPEG伪影去除

摘要

训练单一的深度盲模型以处理不同质量因子的JPEG图像伪影去除问题,因其在实际应用中的便利性而受到广泛关注。然而,现有的深度盲方法通常直接重建图像而不预测质量因子,因此缺乏非盲方法所具有的输出控制灵活性。为了解决这一问题,本文提出了一种灵活的盲卷积神经网络,即FBCNN(Flexible Blind Convolutional Neural Network),该网络可以预测可调的质量因子,从而控制伪影去除与细节保留之间的平衡。具体而言,FBCNN通过解耦模块将质量因子从JPEG图像中分离出来,然后通过质量因子注意力块将预测的质量因子嵌入到后续的重建模块中,实现灵活控制。此外,我们发现现有方法在处理非对齐的双JPEG图像时即使只有单像素偏移也容易失败,因此我们提出了一种双JPEG退化模型来扩充训练数据。大量实验表明,在单JPEG图像、更一般的双JPEG图像以及真实世界的JPEG图像上,我们提出的FBCNN在定量指标和视觉质量方面均优于现有最先进方法。

代码仓库

jiaxi-jiang/fbcnn
官方
pytorch
GitHub 中提及

基准测试

基准方法指标
jpeg-artifact-correction-on-bsds500-qualityFBCNN
PSNR: 27.85
PSNR-B: 27.52
SSIM: 0.799
jpeg-artifact-correction-on-bsds500-quality-1FBCNN
PSNR: 30.14
PSNR-B: 29.56
SSIM: 0.867
jpeg-artifact-correction-on-bsds500-quality-2FBCNN
PSNR: 31.45
PSNR-B: 30.72
SSIM: 0.897
jpeg-artifact-correction-on-bsds500-quality-3FBCNN
PSNR: 29.67
PSNR-B: 29.22
SSIM: 0.821
jpeg-artifact-correction-on-bsds500-quality-4FBCNN
PSNR: 32.00
PSNR-B: 31.19
SSIM: 0.885
jpeg-artifact-correction-on-bsds500-quality-5FBCNN
PSNR: 33.37
PSNR-B: 32.32
SSIM: 0.913
jpeg-artifact-correction-on-classic5-qualityFBCNN
PSNR: 30.12
PSNR-B: 29.80
SSIM: 0.822
jpeg-artifact-correction-on-classic5-quality-1FBCNN
PSNR: 32.31
PSNR-B: 31.74
SSIM: 0.872
jpeg-artifact-correction-on-classic5-quality-2FBCNN
PSNR: 33.54
PSNR-B: 32.78
SSIM: 0.894
jpeg-artifact-correction-on-classic5-quality-3FBCNN
PSNR: 34.35
SSIM: 0.907
jpeg-artifact-correction-on-icb-quality-10FBCNN
PSNR: 32.18
PSNR-B: 32.15
SSIM: 0.815
jpeg-artifact-correction-on-icb-quality-20FBCNN
PSNR: 34.38
PSNR-B: 34.34
SSIM: 0.844
jpeg-artifact-correction-on-icb-quality-30FBCNN
PSNR: 35.41
PSNR-B: 35.35
SSIM: 0.857
jpeg-artifact-correction-on-live1-quality-10FBCNN
PSNR: 27.77
PSNR-B: 27.51
SSIM: 0.803
jpeg-artifact-correction-on-live1-quality-10-1FBCNN
PSNR: 29.75
PSNR-B: 29.40
SSIM: 0.827
jpeg-artifact-correction-on-live1-quality-20FBCNN
PSNR: 30.11
PSNR-B: 29.70
SSIM: 0.868
jpeg-artifact-correction-on-live1-quality-20-1FBCNN
PSNR: 32.13
PSNR-B: 31.57
SSIM: 0.889
jpeg-artifact-correction-on-live1-quality-30FBCNN
PSNR: 31.43
PSNR-B: 30.92
SSIM: 0.897
jpeg-artifact-correction-on-live1-quality-30-1FBCNN
PSNR: 33.54
PSNR-B: 32.83
SSIM: 0.916
jpeg-artifact-correction-on-live1-quality-40FBCNN
PSNR: 34.53
SSIM: 0.931

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供
面向灵活的盲JPEG伪影去除 | 论文 | HyperAI超神经