
摘要
由何恺明等人提出的具有重要影响力的残差网络(Residual Networks, ResNet)至今仍是众多科研论文中的黄金标准架构。这类网络通常作为研究中的默认架构,或在提出新型网络结构时作为基准模型。然而,自2015年ResNet架构问世以来,神经网络训练的最佳实践已取得显著进展。新型优化方法与数据增强技术显著提升了训练方案的有效性。本文重新评估了在融合这些最新进展的训练流程下,原始ResNet-50模型的性能表现。我们将在开源库timm中分享具有竞争力的训练配置及预训练模型,期望这些资源能为未来的研究提供更优的基准参考。例如,在我们更为严格的训练设置下,未经额外数据或知识蒸馏的原始ResNet-50模型在ImageNet验证集上以224×224分辨率达到了80.4%的Top-1准确率。此外,我们还报告了在该训练流程下,多种主流模型所取得的性能表现。
代码仓库
jayroxis/ordering-in-graph-generation
pytorch
GitHub 中提及
rwightman/pytorch-image-models
官方
pytorch
GitHub 中提及
samsungsailmontreal/ghn3
pytorch
GitHub 中提及
Westlake-AI/openmixup
pytorch
open-mmlab/mmdetection
pytorch
GitHub 中提及
open-mmlab/mmclassification
pytorch
GitHub 中提及
hunto/dist_kd
pytorch
GitHub 中提及
eshoyuan/taop2021-3rd-solution
pytorch
GitHub 中提及
sithu31296/semantic-segmentation
pytorch
GitHub 中提及
shinya7y/UniverseNet
pytorch
GitHub 中提及
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| classification-on-indl | ResNetV2_50 | Average Recall: 88.08% |
| domain-generalization-on-vizwiz | ResNet-50 (gn) | Accuracy - All Images: 48.9 Accuracy - Clean Images: 44.4 Accuracy - Corrupted Images: 39.1 |
| fine-grained-image-classification-on-oxford | ResNet50 (A1) | Accuracy: 97.9% FLOPS: 4.1 PARAMS: 24M |
| fine-grained-image-classification-on-stanford | ResNet50 (A1) | Accuracy: 92.7% FLOPS: 4.1B PARAMS: 24M |
| image-classification-on-cifar-10 | cvpr_class | Percentage correct: 85.28 |
| image-classification-on-cifar-10 | ResNet50 (A1) | Percentage correct: 98.3 |
| image-classification-on-cifar-100 | ResNet50 (A1) | PARAMS: 25M Percentage correct: 86.9 |
| image-classification-on-flowers-102 | ResNet50 (A1) | Accuracy: 97.9 FLOPS: 4.1 PARAMS: 25M |
| image-classification-on-imagenet | DeiT-S (T2) | Number of params: 22M Top 1 Accuracy: 80.4% |
| image-classification-on-imagenet | ResNet-152 (A2 + reg) | Number of params: 60.2M Top 1 Accuracy: 82.4% |
| image-classification-on-imagenet | ResNet-152 (A2) | Number of params: 60.2M Top 1 Accuracy: 81.8% |
| image-classification-on-imagenet | ResNet50 (A3) | Number of params: 25M Top 1 Accuracy: 78.1% |
| image-classification-on-imagenet | ResNet50 (A1) | Number of params: 25M Top 1 Accuracy: 80.4% |
| image-classification-on-imagenet-real | ResNet50 (A1) | Accuracy: 85.7% Params: 25M |
| image-classification-on-imagenet-v2 | ResNet50 (A1) | Top 1 Accuracy: 68.7 |
| image-classification-on-inaturalist-2019 | ResNet50 (A2) | Top-1 Accuracy: 75.0 |
| medical-image-classification-on-nct-crc-he | ResNeXt-50-32x4d | Accuracy (%): 95.46 F1-Score: 97.46 Precision: 99.91 Specificity: 99.43 |