
摘要
少样本分类因其依赖少量标注样本而带来的不确定性,成为一个具有挑战性的问题。近年来,众多方法被提出,其共同目标是将先前任务中获得的知识进行迁移,通常通过使用预训练的特征提取器来实现。沿袭这一思路,本文提出一种新型的基于迁移学习的方法,旨在对特征向量进行处理,使其分布更接近高斯分布,从而提升分类准确率。在归纳式少样本学习(transductive few-shot learning)场景下,当训练阶段可获得未标注的测试样本时,我们进一步引入一种受最优传输(optimal transport)启发的算法,以进一步提升模型性能。通过在标准视觉基准数据集上的实验,我们验证了所提出方法在多种数据集、主干网络架构及少样本设置下,均能实现当前最优的分类准确率。
代码仓库
yhu01/bms
官方
pytorch
GitHub 中提及
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| few-shot-image-classification-on-cifar-fs-5 | PEMnE-BMS* | Accuracy: 88.44 |
| few-shot-image-classification-on-cifar-fs-5-1 | PEMnE-BMS* | Accuracy: 91.86 |
| few-shot-image-classification-on-cub-200-5 | PEMnE-BMS* | Accuracy: 96.43 |
| few-shot-image-classification-on-cub-200-5-1 | PEMnE-BMS* | Accuracy: 94.78 |
| few-shot-image-classification-on-mini-2 | PEMbE-NCM (inductive) | Accuracy: 68.43 |
| few-shot-image-classification-on-mini-2 | PEMnE-BMS* (transductive) | Accuracy: 85.54 |
| few-shot-image-classification-on-mini-3 | PEMbE-NCM (inductive) | Accuracy: 84.67 |
| few-shot-image-classification-on-mini-3 | PEMnE-BMS*(transductive) | Accuracy: 91.53 |
| few-shot-image-classification-on-mini-5 | PEMnE-BMS* | Accuracy: 63.90 |
| few-shot-image-classification-on-mini-6 | PEMnE-BMS | Accuracy: 79.15 |
| few-shot-image-classification-on-tiered | PEMnE-BMS* | Accuracy: 86.07 |
| few-shot-image-classification-on-tiered-1 | PEMnE-BMS* | Accuracy: 91.09 |