3 个月前

Transformer相较于CNN是否更具鲁棒性?

Transformer相较于CNN是否更具鲁棒性?

摘要

Transformer已成为视觉识别领域中一种强大的工具。除了在多种视觉基准测试中展现出具有竞争力的性能外,近期研究还指出,与卷积神经网络(CNNs)相比,Transformer具有更强的鲁棒性。然而,令人惊讶的是,我们发现这些结论源于不公平的实验设置:在不同规模下比较Transformer与CNN,并采用了不同的训练框架。本文旨在首次提供Transformer与CNN之间公平且深入的对比,重点关注鲁棒性评估。在统一的训练设置下,我们首先挑战了“Transformer在对抗鲁棒性方面优于CNN”这一既有观点。更令人意外的是,当CNN采用Transformer的训练策略(training recipes)时,其对抗攻击防御能力可轻易达到与Transformer相当的水平。在处理分布外(out-of-distribution)样本的泛化能力方面,我们发现,对(外部)大规模数据集进行预训练并非使Transformer优于CNN的必要条件。进一步的消融实验表明,Transformer所展现出的更强泛化能力,主要源于其自注意力(self-attention)类架构本身的特性,而非其他训练设置带来的影响。我们希望本研究能够帮助学术界更准确地理解并评估Transformer与CNN在鲁棒性方面的实际表现。相关代码与模型已公开发布于:https://github.com/ytongbai/ViTs-vs-CNNs。

代码仓库

ytongbai/ViTs-vs-CNNs
官方
pytorch
GitHub 中提及

基准测试

基准方法指标
adversarial-robustness-on-imagenetResNet-50 (SGD, Cosine)
Accuracy: 77.4
adversarial-robustness-on-imagenetResNet-50 (AdamW, Cosine)
Accuracy: 76.4
adversarial-robustness-on-imagenetResNet-50 (SGD, Step)
Accuracy: 76.9
adversarial-robustness-on-imagenetDeiT-S (AdamW, Cosine)
Accuracy: 76.8
adversarial-robustness-on-imagenet-aResNet-50 (AdamW, Cosine)
Accuracy: 3.1
adversarial-robustness-on-imagenet-aResNet-50 (SGD, Cosine)
Accuracy: 3.3
adversarial-robustness-on-imagenet-aResNet-50 (SGD, Step)
Accuracy: 3.2
adversarial-robustness-on-imagenet-aDeiT-S (AdamW, Cosine)
Accuracy: 12.2
adversarial-robustness-on-imagenet-cDeiT-S (AdamW, Cosine)
mean Corruption Error (mCE): 48.0
adversarial-robustness-on-imagenet-cResNet-50 (SGD, Step)
mean Corruption Error (mCE): 57.9
adversarial-robustness-on-imagenet-cResNet-50 (SGD, Cosine)
mean Corruption Error (mCE): 56.9
adversarial-robustness-on-imagenet-cResNet-50 (AdamW, Cosine)
mean Corruption Error (mCE): 59.3
adversarial-robustness-on-stylized-imagenetResNet-50 (AdamW, Cosine)
Accuracy: 8.1
adversarial-robustness-on-stylized-imagenetResNet-50 (SGD, Cosine)
Accuracy: 8.4
adversarial-robustness-on-stylized-imagenetResNet-50 (SGD, Step)
Accuracy: 8.3
adversarial-robustness-on-stylized-imagenetDeiT-S (AdamW, Cosine)
Accuracy: 13.0

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供
Transformer相较于CNN是否更具鲁棒性? | 论文 | HyperAI超神经