3 个月前

MViTv2:面向分类与检测任务的改进型多尺度视觉Transformer

MViTv2:面向分类与检测任务的改进型多尺度视觉Transformer

摘要

本文研究了多尺度视觉Transformer(MViTv2)作为一种统一架构在图像分类、视频分类以及目标检测任务中的应用。我们提出了一种改进的MViT结构,引入了分解的相对位置编码(decomposed relative positional embeddings)与残差池化连接(residual pooling connections)。基于该架构,我们构建了五个不同规模的模型,并在ImageNet图像分类、COCO目标检测以及Kinetics视频识别任务上进行了评估,结果均优于现有方法。此外,我们将MViTv2的池化注意力机制(pooling attention)与窗口注意力机制(window attention)进行了对比,发现MViTv2在准确率与计算效率的权衡上表现更优。在不依赖额外技巧(bells-and-whistles)的情况下,MViTv2在三个领域均达到了当前最优性能:在ImageNet图像分类任务中取得88.8%的准确率,在COCO目标检测任务中达到58.7 boxAP,在Kinetics-400视频分类任务中实现86.1%的准确率。相关代码与预训练模型已开源,地址为:https://github.com/facebookresearch/mvit。

代码仓库

基准测试

基准方法指标
action-classification-on-kinetics-400MViTv2-L (ImageNet-21k pretrain)
Acc@1: 86.1
Acc@5: 97.0
action-classification-on-kinetics-400MViT-B (train from scratch)
FLOPs (G) x views: 225x5
action-classification-on-kinetics-600MViTv2-L (ImageNet-21k pretrain)
Top-1 Accuracy: 87.9
Top-5 Accuracy: 97.9
action-classification-on-kinetics-600MViTv2-B (train from scratch)
Top-5 Accuracy: 97.2
action-classification-on-kinetics-600MViTv2-L (train from scratch)
Top-1 Accuracy: 85.5
action-classification-on-kinetics-600MViT-L (train from scratch)
GFLOPs: 206x5
action-classification-on-kinetics-700MViTv2-B
Top-1 Accuracy: 76.6
Top-5 Accuracy: 93.2
action-classification-on-kinetics-700MViTv2-L (ImageNet-21k pretrain)
Top-1 Accuracy: 79.4
Top-5 Accuracy: 94.9
action-classification-on-kinetics-700MoViNet-A6
Top-1 Accuracy: 79.4
action-recognition-in-videos-on-somethingMViT-L (IN-21K + Kinetics400 pretrain)
GFLOPs: 2828x3
action-recognition-in-videos-on-somethingMViTv2-L (IN-21K + Kinetics400 pretrain)
Parameters: 213.1
Top-1 Accuracy: 73.3
Top-5 Accuracy: 94.1
action-recognition-in-videos-on-somethingMViTv2-B (IN-21K + Kinetics400 pretrain)
Parameters: 51.1
Top-5 Accuracy: 93.4
action-recognition-in-videos-on-somethingMViT-B (IN-21K + Kinetics400 pretrain)
GFLOPs: 225x3
Top-1 Accuracy: 72.1
action-recognition-on-ava-v2-2MViTv2-L (IN21k, K700)
mAP: 34.4
image-classification-on-imagenetMViTv2-L (384 res)
GFLOPs: 140.2
Number of params: 218M
Top 1 Accuracy: 86.3%
image-classification-on-imagenetMViTv2-H (mageNet-21k pretrain)
GFLOPs: 120.6
Number of params: 667M
Top 1 Accuracy: 88%
image-classification-on-imagenetMViTv2-H (512 res, ImageNet-21k pretrain)
GFLOPs: 763.5
Number of params: 667M
Top 1 Accuracy: 88.8%
image-classification-on-imagenetMViTv2-T
GFLOPs: 4.7
Number of params: 24M
Top 1 Accuracy: 82.3%
image-classification-on-imagenetMViTv2-L (384 res, ImageNet-21k pretrain)
GFLOPs: 140.7
Number of params: 218M
Top 1 Accuracy: 88.4%
instance-segmentation-on-coco-minivalMViTv2-L (Cascade Mask R-CNN, multi-scale, IN21k pre-train)
mask AP: 50.5
instance-segmentation-on-coco-minivalMViT-L (Mask R-CNN, single-scale)
mask AP: 46.2
instance-segmentation-on-coco-minivalMViTv2-L (Cascade Mask R-CNN, single-scale)
mask AP: 47.1
instance-segmentation-on-coco-minivalMViTv2-H (Cascade Mask R-CNN, single-scale, IN21k pre-train)
mask AP: 48.5
object-detection-on-coco-minivalMViTv2-L (Cascade Mask R-CNN, multi-scale, IN21k pre-train)
box AP: 58.7
object-detection-on-coco-minivalMViTv2-L (Cascade Mask R-CNN, single-scale)
box AP: 54.3
object-detection-on-coco-minivalMViTv2-H (Cascade Mask R-CNN, single-scale, IN21k pre-train)
box AP: 56.1
object-detection-on-coco-minivalMViT-L (Mask R-CNN, single-scale, IN21k pre-train)
box AP: 52.7
object-detection-on-coco-oMViTV2-H (Cascade Mask R-CNN)
Average mAP: 30.9
Effective Robustness: 5.62

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供
MViTv2:面向分类与检测任务的改进型多尺度视觉Transformer | 论文 | HyperAI超神经