Nan DuYanping HuangAndrew M. DaiSimon TongDmitry LepikhinYuanzhong XuMaxim KrikunYanqi ZhouAdams Wei YuOrhan FiratBarret ZophLiam FedusMaarten BosmaZongwei ZhouTao WangYu Emma WangKellie WebsterMarie PellatKevin RobinsonKathleen Meier-HellsternToju DukeLucas DixonKun ZhangQuoc V LeYonghui WuZhifeng ChenClaire Cui

摘要
通过增加数据量、计算资源和模型参数,语言模型的规模扩展推动了自然语言处理领域的显著进展。例如,得益于规模扩展,GPT-3在上下文学习任务上取得了优异表现。然而,训练这类大规模稠密模型需要消耗大量的计算资源。本文提出并开发了一类名为GLaM(通用语言模型,Generalist Language Model)的语言模型家族,该模型采用稀疏激活的专家混合(Mixture-of-Experts, MoE)架构,在显著提升模型容量的同时,相较于稠密模型大幅降低了训练成本。其中最大的GLaM模型拥有1.2万亿参数,约为GPT-3的7倍。该模型在训练过程中仅消耗GPT-3所需能量的三分之一,且在推理阶段所需的计算浮点运算量(FLOPs)仅为GPT-3的一半,同时在29项自然语言处理任务上均实现了更优的零样本(zero-shot)与单样本(one-shot)性能。
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| common-sense-reasoning-on-arc-challenge | GLaM 64B/64E (0 shot) | Accuracy: 50.3 |
| common-sense-reasoning-on-arc-challenge | GLaM 64B/64E (1 shot) | Accuracy: 48.2 |
| common-sense-reasoning-on-arc-easy | GLaM 64B/64E (0-shot) | Accuracy: 68.0 |
| common-sense-reasoning-on-arc-easy | GLaM (64B/64E) (5-shot) | Accuracy: 74.8 |
| language-modelling-on-lambada | GLaM 62B/64E (One-Shot) | Accuracy: 80.9 |
| question-answering-on-natural-questions | GLaM 62B/64E (One-Shot) | EM: 26.3 |
| question-answering-on-natural-questions | GLaM 62B/64E (Zero-Shot) | EM: 24.7 |
| question-answering-on-natural-questions | GLaM 62B/64E (Few-Shot) | EM: 32.5 |
| question-answering-on-triviaqa | GLaM 62B/64E (Few-shot) | EM: 75.8 |
| question-answering-on-triviaqa | GLaM 62B/64E (One-shot) | EM: 75.8 |
| question-answering-on-triviaqa | GLaM 62B/64E (Zero-shot) | EM: 71.3 |
| question-answering-on-webquestions | GLaM 62B/64E (Zero-Shot) | EM: 15.5 |