3 个月前

EASY:集成增强-shot Y型学习:基于简单组件的最先进少样本分类

EASY:集成增强-shot Y型学习:基于简单组件的最先进少样本分类

摘要

少样本学习旨在利用一个或多个深度学习模型所习得的知识,从而在仅有每类少量标注样本的新任务上实现良好的分类性能。近年来,该领域涌现出大量研究工作,提出了包含多种组件的方法。然而,一个常见问题在于,这些方法通常基于次优训练的模型来提取知识,从而引发质疑:所提出的方法是否真的优于直接使用更优的初始模型(而不引入额外组件)?在本工作中,我们提出一种简单的方法,该方法在多个标准化基准测试中达到了甚至超越了当前最先进水平的性能,同时几乎未增加用于在通用数据集上训练初始深度学习模型所需的超参数或模型参数。该方法为新方法的提出以及现有方法的改进提供了一个全新的基线,有助于更公平地评估和比较各类技术。

代码仓库

ybendou/easy
官方
pytorch
GitHub 中提及
brain-bzh/pefsl
pytorch
GitHub 中提及
ybendou/fs-generalization
pytorch
GitHub 中提及

基准测试

基准方法指标
few-shot-image-classification-on-cifar-fs-5EASY 2xResNet12 1/√2 (transductive)
Accuracy: 86.99
few-shot-image-classification-on-cifar-fs-5EASY 3xResNet12 (transductive)
Accuracy: 87.16
few-shot-image-classification-on-cifar-fs-5EASY 2xResNet12 1/√2 (inductive)
Accuracy: 75.24
few-shot-image-classification-on-cifar-fs-5EASY 3xResNet12 (inductive)
Accuracy: 76.2
few-shot-image-classification-on-cifar-fs-5-1EASY 2xResNet12 1/√2 (transductive)
Accuracy: 90.2
few-shot-image-classification-on-cifar-fs-5-1EASY 3xResNet12 (transductive)
Accuracy: 90.47
few-shot-image-classification-on-cifar-fs-5-1EASY 3xResNet12 (inductive)
Accuracy: 89.0
few-shot-image-classification-on-cifar-fs-5-1EASY 2xResNet12 1/√2 (inductive)
Accuracy: 88.38
few-shot-image-classification-on-cub-200-5EASY 4xResNet12 (inductive)
Accuracy: 91.59
few-shot-image-classification-on-cub-200-5EASY 4xResNet12 (transductive)
Accuracy: 93.5
few-shot-image-classification-on-cub-200-5EASY 3xResNet12 (inductive)
Accuracy: 91.93
few-shot-image-classification-on-cub-200-5-1EASY 4xResNet12 (transductive)
Accuracy: 90.5
few-shot-image-classification-on-cub-200-5-1EASY 3xResNet12 (inductive)
Accuracy: 78.56
few-shot-image-classification-on-cub-200-5-1EASY 3xResNet12 (transductive)
Accuracy: 90.56
few-shot-image-classification-on-cub-200-5-1EASY 4xResNet12 (inductive)
Accuracy: 77.97
few-shot-image-classification-on-cub-200-5-2EASY 3xResNet12 (transductive)
Accuracy: 93.79
few-shot-image-classification-on-fc100-5-wayEASY 2xResNet12 1/√2 (inductive)
Accuracy: 47.94
few-shot-image-classification-on-fc100-5-wayEASY 3xResNet12 (transductive)
Accuracy: 54.13
few-shot-image-classification-on-fc100-5-wayEASY 3xResNet12 (inductive)
Accuracy: 48.07
few-shot-image-classification-on-fc100-5-wayEASY 2xResNet12 1/√2 (transductive)
Accuracy: 54.47
few-shot-image-classification-on-fc100-5-way-1EASY 2xResNet12 1/√2 (transductive)
Accuracy: 65.82
few-shot-image-classification-on-fc100-5-way-1EASY 3xResNet12 (inductive)
Accuracy: 64.74
few-shot-image-classification-on-fc100-5-way-1EASY 2xResNet12 1/√2 (inductive)
Accuracy: 64.14
few-shot-image-classification-on-fc100-5-way-1EASY 3xResNet12 (transductive)
Accuracy: 66.86
few-shot-image-classification-on-mini-2EASY 3xResNet12 (transductive)
Accuracy: 84.04
few-shot-image-classification-on-mini-2EASY 2xResNet12 1/√2 (inductive)
Accuracy: 70.63
few-shot-image-classification-on-mini-2EASY 2xResNet12 1/√2 (transductive)
Accuracy: 82.31
few-shot-image-classification-on-mini-2EASY 3xResNet12 (inductive)
Accuracy: 71.75
few-shot-image-classification-on-mini-3EASY 2xResNet12 1/√2 (transductive)
Accuracy: 88.57
few-shot-image-classification-on-mini-3EASY 2xResNet12 1/√2 (inductive)
Accuracy: 86.28
few-shot-image-classification-on-mini-3EASY 3xResNet12 (transductive)
Accuracy: 89.14
few-shot-image-classification-on-mini-3EASY 3xResNet12 (inductive)
Accuracy: 87.15
few-shot-image-classification-on-tieredASY ResNet12 (transductive)
Accuracy: 83.98
few-shot-image-classification-on-tieredEASY 3xResNet12 (inductive)
Accuracy: 74.71
few-shot-image-classification-on-tieredASY ResNet12 (ours)
Accuracy: 74.31
few-shot-image-classification-on-tieredEASY 3xResNet12 (transductive)
Accuracy: 84.29
few-shot-image-classification-on-tiered-1EASY 3xResNet12 (inductive)
Accuracy: 88.33
few-shot-image-classification-on-tiered-1EASY 3xResNet12 (transductive)
Accuracy: 89.76
few-shot-image-classification-on-tiered-1ASY ResNet12 (transductive)
Accuracy: 89.26
few-shot-image-classification-on-tiered-1ASY ResNet12 (inductive)
Accuracy: 87.86
few-shot-learning-on-mini-imagenet-5-way-1EASY (transductive)
Accuracy: 82.75

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供
EASY:集成增强-shot Y型学习:基于简单组件的最先进少样本分类 | 论文 | HyperAI超神经