
摘要
本文提出将近期发展的签名变换(Signature Transform)应用于图像分布相似性度量,并进行了详尽的分析与广泛评估。我们首次开创性地提出了基于均方根误差(RMSE)和平均绝对误差(MAE)的签名度量方法,同时将对数签名(log-signature)作为衡量生成对抗网络(GAN)收敛性的替代指标,这一问题在以往研究中已受到广泛关注。此外,我们率先引入基于统计分析的度量方法,用于评估GAN生成样本分布的拟合优度,该方法兼具高效性与有效性。现有的GAN评估方法通常依赖大量计算,且需在GPU上完成,耗时较长;相比之下,本文方法将计算时间缩短至秒级,且计算在CPU上即可完成,同时保持了相当的评估精度。最后,本文还提出了一种新颖的、适用于该场景的PCA自适应t-SNE数据可视化方法。
代码仓库
decurtoydiaz/signatures
官方
GitHub 中提及
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| image-generation-on-afhq-cat | Stylegan2-ada (NVIDIA pre-trained) | MAE Signature: 45968 MAE log-signature: 22297 RMSE Signature: 61450 RMSE log-signature: 29201 |
| image-generation-on-afhq-dog | Stylegan2-ada (NVIDIA pre-trained) | MAE Signature: 30441 MAE log-signature: 24612 RMSE Signature: 38861 RMSE log-signature: 31686 |
| image-generation-on-afhq-wild | Stylegan2-ada (NVIDIA pre-trained) | MAE Signature: 25578 MAE log-signature: 20359 RMSE Signature: 33306 RMSE log-signature: 26622 |
| image-generation-on-metfaces | t-Stylegan3-ada (NVIDIA pre-trained) | MAE Signature: 19872 MAE log-signature: 13761 RMSE Signature: 30894 RMSE log-signature: 21560 |
| image-generation-on-metfaces | Stylegan2-ada (NVIDIA pre-trained) | MAE Signature: 23428 MAE log-signature: 18071 RMSE Signature: 33247 RMSE log-signature: 25685 |
| image-generation-on-metfaces | r-Stylegan3-ada (NVIDIA pre-trained) | MAE Signature: 22799 MAE log-signature: 16539 RMSE Signature: 34977 RMSE log-signature: 24707 |
| image-generation-on-nasa-perseverance | Stylegan2-ada | MAE Signature: 9086 MAE log-signature: 5717 RMSE Signature: 11601 RMSE log-signature: 7397 |