
摘要
半监督语义分割的核心在于为未标注图像的像素合理地分配伪标签。一种常见的做法是将置信度较高的预测结果作为伪真值,但这会导致大量像素因可靠性不足而被忽略,从而造成数据利用率低下。我们认为,每一个像素在模型训练过程中都具有重要意义,即使其预测结果存在模糊性。直观来看,一个不可靠的预测可能在置信度最高的若干类别之间产生混淆,但其应能明确排除其余类别。因此,这类像素可被合理地视为对那些最不可能的类别而言的负样本。基于这一洞察,我们提出了一种高效利用未标注数据的训练框架。具体而言,我们通过预测结果的熵值区分可靠与不可靠像素,将每个不可靠像素推送至一个按类别组织的负样本队列中,并实现对所有候选像素的联合训练。考虑到训练过程中预测结果逐渐趋于准确的演化特性,我们动态调整可靠与不可靠像素的划分阈值。在多个基准数据集和不同训练设置下的实验结果表明,所提方法在性能上显著优于现有最先进方法。
代码仓库
Haochen-Wang409/U2PL
官方
pytorch
GitHub 中提及
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| semi-supervised-semantic-segmentation-on-1 | U2PL (DeepLab v3+ with ResNet-101 pretraind on ImageNet-1K, AEL) | Validation mIoU: 78.51% |
| semi-supervised-semantic-segmentation-on-10 | U2PL (DeepLab v3+ with ResNet-101) | Validation mIoU: 79.5 |
| semi-supervised-semantic-segmentation-on-15 | U2PL (DeepLab v3+ with ResNet-101 pretraind on ImageNet-1K, CutMix) | Validation mIoU: 80.5% |
| semi-supervised-semantic-segmentation-on-2 | U2PL (DeepLab v3+ with ResNet-101 pretraind on ImageNet-1K, AEL) | Validation mIoU: 76.48% |
| semi-supervised-semantic-segmentation-on-21 | U2PL (DeepLab v3+ with ResNet-101 pretraind on ImageNet-1K, CutMix) | Validation mIoU: 77.21 |
| semi-supervised-semantic-segmentation-on-22 | U2PL (DeepLab v3+ with ResNet-101 pretraind on ImageNet-1K, AEL) | Validation mIoU: 74.90% |
| semi-supervised-semantic-segmentation-on-27 | U2PL (DeepLab v3+ with ResNet-101) | Validation mIoU: 68.0 |
| semi-supervised-semantic-segmentation-on-28 | U2PL (DeepLab v3+ with ResNet-101) | Validation mIoU: 69.2 |
| semi-supervised-semantic-segmentation-on-29 | U2PL (DeepLab v3+ with ResNet-101) | Validation mIoU: 73.7 |
| semi-supervised-semantic-segmentation-on-30 | U2PL (DeepLab v3+ with ResNet-101) | Validation mIoU: 76.2 |
| semi-supervised-semantic-segmentation-on-4 | U2PL (DeepLab v3+ with ResNet-101 pretraind on ImageNet-1K, CutMix) | Validation mIoU: 79.01% |
| semi-supervised-semantic-segmentation-on-8 | U2PL (DeepLab v3+ with ResNet-101 pretraind on ImageNet-1K, AEL) | Validation mIoU: 79.12% |
| semi-supervised-semantic-segmentation-on-9 | U2PL (DeepLab v3+ with ResNet-101 pretraind on ImageNet-1K, CutMix) | Validation mIoU: 79.3 |