3 个月前

HM:面向少样本分割的混合掩码方法

HM:面向少样本分割的混合掩码方法

摘要

我们研究少样本语义分割(few-shot semantic segmentation),其目标是在仅提供少量目标类别标注的支持图像(support images)的情况下,对查询图像(query image)中的目标物体进行分割。近年来,多种方法采用特征掩码(Feature Masking, FM)技术,通过抑制无关的特征激活,提升分割掩码预测的可靠性。然而,FM方法存在一个根本性局限:难以保留影响分割精度的细粒度空间细节,尤其在处理小目标物体时更为明显。本文提出一种简单、高效且有效的改进方法,用于增强特征掩码(FM),我们将其称为混合掩码(Hybrid Masking, HM)。具体而言,通过研究并利用一种互补的基础输入掩码方法,有效弥补了FM技术在细粒度空间细节上的损失。我们在三个公开可用的基准数据集上进行了实验,对比了当前性能强劲的少样本分割(Few-Shot Segmentation, FSS)基线方法。实验结果表明,我们的方法在不同基准上均显著优于现有最先进方法。相关代码与训练好的模型已开源,地址为:https://github.com/moonsh/HM-Hybrid-Masking

代码仓库

moonsh/hm-hybrid-masking
官方
pytorch
GitHub 中提及

基准测试

基准方法指标
few-shot-semantic-segmentation-on-coco-20iHSNet (HM, ResNet-50)
Mean IoU: 65.2
few-shot-semantic-segmentation-on-coco-20iHSNet (HM, ResNet-101)
Mean IoU: 66.5
few-shot-semantic-segmentation-on-coco-20iVAT (HM, ResNet-50)
Mean IoU: 65.1
few-shot-semantic-segmentation-on-coco-20i-1ASNet (HM, ResNet-50)
FB-IoU: 70.4
Mean IoU: 44.7
few-shot-semantic-segmentation-on-coco-20i-1HSNet (HM, ResNet-50)
FB-IoU: 70.8
Mean IoU: 44.3
few-shot-semantic-segmentation-on-coco-20i-1VAT (HM, ResNet-50)
FB-IoU: 70
Mean IoU: 43.2
few-shot-semantic-segmentation-on-coco-20i-1ASNet (HM, ResNet-101)
FB-IoU: 71.1
Mean IoU: 45.9
few-shot-semantic-segmentation-on-coco-20i-1HSNet (HM, ResNet-101)
FB-IoU: 71.5
Mean IoU: 46.5
few-shot-semantic-segmentation-on-coco-20i-2HSNet (HM, ResNet-50)
Mean IoU: 69.7
few-shot-semantic-segmentation-on-coco-20i-2HSNet (HM, ResNet-101)
Mean IoU: 70.9
few-shot-semantic-segmentation-on-coco-20i-2VAT (HM, ResNet-50)
Mean IoU: 69.7
few-shot-semantic-segmentation-on-coco-20i-5HSNet (HM, ResNet-50)
FB-IoU: 72.2
Mean IoU: 49.4
few-shot-semantic-segmentation-on-coco-20i-5ASNet (HM, ResNet-50)
FB-IoU: 72.2
Mean IoU: 48.4
few-shot-semantic-segmentation-on-coco-20i-5ASNet (HM, ResNet-101)
FB-IoU: 73.3
Mean IoU: 50.6
few-shot-semantic-segmentation-on-coco-20i-5VAT (HM, ResNet-50)
FB-IoU: 71.8
Mean IoU: 48.3
few-shot-semantic-segmentation-on-coco-20i-5HSNet (HM, ResNet-101)
FB-IoU: 72.9
Mean IoU: 50.6
few-shot-semantic-segmentation-on-fss-1000-1HSNet (HM, ResNet-50)
Mean IoU: 87.1
few-shot-semantic-segmentation-on-fss-1000-1VAT (HM, ResNet-50)
Mean IoU: 89.4
few-shot-semantic-segmentation-on-fss-1000-1HSNet (HM, ResNet-101)
Mean IoU: 87.8
few-shot-semantic-segmentation-on-fss-1000-1VAT (HM, ResNet-101)
Mean IoU: 90.2
few-shot-semantic-segmentation-on-fss-1000-5HSNet (HM, ResNet-101)
Mean IoU: 88.5
few-shot-semantic-segmentation-on-fss-1000-5HSNet (HM, ResNet-50)
Mean IoU: 88
few-shot-semantic-segmentation-on-fss-1000-5VAT (HM, ResNet-50)
Mean IoU: 89.9
few-shot-semantic-segmentation-on-fss-1000-5VAT (HM, ResNet-101)
Mean IoU: 90.5
few-shot-semantic-segmentation-on-pascal-5i-1VAT (HM, ResNet-50)
FB-IoU: 77.1
Mean IoU: 65.8
few-shot-semantic-segmentation-on-pascal-5i-1VAT (HM, ResNet-101)
FB-IoU: 79.4
Mean IoU: 67.8
few-shot-semantic-segmentation-on-pascal-5i-1HSNet (HM, ResNet-50)
FB-IoU: 76.5
Mean IoU: 65
few-shot-semantic-segmentation-on-pascal-5i-1HSNet (HM, ResNet-101)
FB-IoU: 77.8
Mean IoU: 66.7
few-shot-semantic-segmentation-on-pascal-5i-5HSNet (HM, ResNet-101)
FB-IoU: 79.7
Mean IoU: 69.3
few-shot-semantic-segmentation-on-pascal-5i-5HSNet (HM, ResNet-50)
FB-IoU: 77.7
Mean IoU: 67.1
few-shot-semantic-segmentation-on-pascal-5i-5VAT (HM, ResNet-50)
FB-IoU: 78.5
Mean IoU: 68.2
few-shot-semantic-segmentation-on-pascal-5i-5VAT (HM, ResNet-101)
FB-IoU: 81.5
Mean IoU: 70.9

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供
HM:面向少样本分割的混合掩码方法 | 论文 | HyperAI超神经