4 个月前

在图神经网络中遇到异质性时寻找全局同质性

在图神经网络中遇到异质性时寻找全局同质性

摘要

我们研究了在异质图上应用图神经网络的问题。一些现有的方法通过多跳邻居扩展节点的邻域,以包含更多具有同质性的节点。然而,为不同节点设置个性化的邻域大小是一个重大挑战。此外,对于被排除在邻域之外的其他同质节点,它们在信息聚合过程中被忽略。为了解决这些问题,我们提出了两种模型:GloGNN 和 GloGNN++,这两种模型通过从图中的全局节点聚合信息来生成节点的嵌入向量。在每一层中,这两种模型都学习一个系数矩阵来捕捉节点之间的相关性,基于此进行邻域聚合。该系数矩阵允许有符号值,并且是从一个具有闭式解的优化问题中推导出来的。我们进一步加速了邻域聚合过程,并推导出线性时间复杂度。我们从理论上解释了这些模型的有效性,证明了系数矩阵和生成的节点嵌入矩阵都具有所需的分组效果。我们在多个领域的15个基准数据集上进行了广泛的实验,将我们的模型与11种其他竞争对手进行了对比。实验结果表明,我们的方法不仅性能优越,而且非常高效。

代码仓库

基准测试

基准方法指标
node-classification-on-actorGloGNN++
Accuracy: 37.7 ± 1.40
node-classification-on-actorGloGNN
Accuracy: 37.35 ± 1.30
node-classification-on-arxiv-yearGloGNN++
Accuracy: 54.79±0.25
node-classification-on-chameleonGloGNN
Accuracy: 69.78±2.42
node-classification-on-chameleonGloGNN++
Accuracy: 71.21±1.84
node-classification-on-citeseer-48-32-20GloGNN++
1:1 Accuracy: 77.22 ± 1.78
node-classification-on-citeseer-48-32-20GloGNN
1:1 Accuracy: 77.41 ± 1.65
node-classification-on-cora-48-32-20-fixedGloGNN++
1:1 Accuracy: 88.33 ± 1.09
node-classification-on-cora-48-32-20-fixedGloGNN
1:1 Accuracy: 88.31 ± 1.13
node-classification-on-cornellGloGNN
Accuracy: 83.51±4.26
node-classification-on-cornellGloGNN++
Accuracy: 85.95±5.10
node-classification-on-geniusGCNJK
Accuracy: 89.30 ± 0.19
node-classification-on-geniusGloGNN
Accuracy: 90.66 ± 0.11
node-classification-on-geniusGloGNN++
Accuracy: 90.91 ± 0.13
node-classification-on-geniusMLP
Accuracy: 86.68 ± 0.09
node-classification-on-non-homophilic-10GloGNN
1:1 Accuracy: 37.35 ± 1.30
node-classification-on-non-homophilic-10GloGNN++
1:1 Accuracy: 37.70 ± 1.40 
node-classification-on-non-homophilic-11GloGNN++
1:1 Accuracy: 71.21 ± 1.84 
node-classification-on-non-homophilic-11GloGNN
1:1 Accuracy: 69.78 ± 2.42 
node-classification-on-non-homophilic-12GloGNN++
1:1 Accuracy: 57.88 ± 1.76 
node-classification-on-non-homophilic-12GloGNN
1:1 Accuracy: 57.54 ± 1.39 
node-classification-on-non-homophilic-13GloGNN
1:1 Accuracy: 85.57 ± 0.35
node-classification-on-non-homophilic-13GloGNN++
1:1 Accuracy: 85.74 ± 0.42
node-classification-on-non-homophilic-14GloGNN
1:1 Accuracy: 90.66 ± 0.11
node-classification-on-non-homophilic-14GloGNN++
1:1 Accuracy: 90.91 ± 0.13
node-classification-on-non-homophilic-15GloGNN++
1:1 Accuracy: 66.34 ± 0.29
node-classification-on-non-homophilic-15GloGNN
1:1 Accuracy: 66.19 ± 0.29
node-classification-on-non-homophilic-7GloGNN++
1:1 Accuracy: 85.95 ± 5.10 
node-classification-on-non-homophilic-7GloGNN
1:1 Accuracy: 83.51 ± 4.26
node-classification-on-non-homophilic-8GloGNN++
1:1 Accuracy:  88.04 ± 3.22 
node-classification-on-non-homophilic-8GloGNN
1:1 Accuracy: 87.06 ± 3.53 
node-classification-on-non-homophilic-9GloGNN++
1:1 Accuracy: 84.05 ± 4.90
node-classification-on-non-homophilic-9GloGNN
1:1 Accuracy: 84.32 ± 4.15 
node-classification-on-penn94GloGNN
Accuracy: 85.57 ± 0.35
node-classification-on-penn94GloGNN++
Accuracy: 85.74±0.42
node-classification-on-pokecGloGNN++
Accuracy: 83.05±0.07
node-classification-on-pubmed-48-32-20-fixedGloGNN
1:1 Accuracy: 89.62 ± 0.35
node-classification-on-pubmed-48-32-20-fixedGloGNN++
1:1 Accuracy: 89.24 ± 0.39
node-classification-on-squirrelGloGNN
Accuracy: 57.54±1.39
node-classification-on-squirrelGloGNN++
Accuracy: 57.88±1.76–
node-classification-on-texasGloGNN++
Accuracy: 84.05±4.90
node-classification-on-texasGloGNN
Accuracy: 84.32±4.15
node-classification-on-wisconsinGloGNN
Accuracy: 87.06±3.53
node-classification-on-wisconsinGloGNN++
Accuracy: 88.04±3.22

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供
在图神经网络中遇到异质性时寻找全局同质性 | 论文 | HyperAI超神经