
摘要
深度学习凭借其灵活性和适应性,已成为技术与商业领域广泛应用的“通用解决方案”。然而,其通常依赖于黑箱模型,这在一定程度上削弱了结果的可信度。为了更深入理解系统行为,尤其是由时间序列驱动的系统,引入所谓的后处理可解释人工智能(post-hoc eXplainable Artificial Intelligence, XAI)方法,对模型内部机制进行剖析显得尤为重要。针对时间序列数据的XAI方法主要分为两类:模型无关型(model-agnostic)与模型特定型(model-specific)。本文聚焦于模型特定型方法。不同于其他方法仅采用类别激活映射(Class Activation Mapping, CAM)或注意力机制(Attention Mechanism),本文提出一种融合二者优势的统一框架,命名为多变量时间序列时序加权时空可解释神经网络(Temporal Weighted Spatiotemporal Explainable Neural Network for Multivariate Time Series, TSEM)。TSEM巧妙结合了循环神经网络(RNN)与卷积神经网络(CNN)的能力:将RNN的隐藏单元作为注意力权重,作用于CNN特征图的时间轴方向,从而实现对时间动态特征的精细化建模。实验结果表明,TSEM在性能上优于XCM模型;在分类准确率方面与STAM相当,同时在可解释性方面满足多项关键标准,包括因果性(causality)、保真度(fidelity)以及时空一致性(spatiotemporality)。
代码仓库
a11to1n3/tsem
官方
pytorch
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| time-series-classification-on-1 | TSEM | Accuracy: 0.395 |
| time-series-classification-on-2 | TSEM | Accuracy: 0.557 |
| time-series-classification-on-3 | TSEM | Accuracy: 0.756 |
| time-series-classification-on-basicmotions | TSEM | Accuracy: 0.925 |
| time-series-classification-on-cricket | TSEM | Accuracy: 0.722 |
| time-series-classification-on-eigenworms | TSEM | % Test Accuracy: 42 |
| time-series-classification-on-ering | TSEM | Accuracy: 0.844 |
| time-series-classification-on-facedetection-1 | TSEM | Accuracy: 0.513 |
| time-series-classification-on-handwriting | TSEM | Accuracy: 0.117 |
| time-series-classification-on-heartbeat | TSEM | Accuracy: 0.746 |
| time-series-classification-on-libras | TSEM | Accuracy: 0.372 |
| time-series-classification-on-natops | TSEM | Accuracy: 0.833 |
| time-series-classification-on-pendigits-1 | TSEM | Accuracy: 0.686 |
| time-series-classification-on-racketsports | TSEM | Accuracy: 0.77 |
| time-series-classification-on-standwalkjump | TSEM | Accuracy: 0.467 |
| time-series-classification-on-uci-epileptic | TSEM | Accuracy: 0.891 |
| time-series-classification-on-uwave | TSEM | Accuracy: 0.831 |