Elia Moscoso ThompsonAndrea RanieriSilvia BiasottiMiguel ChicchonIvan SipiranMinh-Khoi PhamThang-Long Nguyen-HoHai-Dang NguyenMinh-Triet Tran

摘要
本文介绍了在2022年SHREC竞赛中“道路路面坑洼与裂缝检测”赛道所提交的各类方法的评估情况。共对比了7种针对道路表面语义分割的方法,其中包括6个参赛者提交的方法以及一种基准方法。所有方法均基于深度学习技术,并在相同的测试环境中进行性能验证(即使用单一的Jupyter笔记本环境)。参赛者获得了包含3836对语义分割图像/掩码以及797段由最新深度相机采集的RGB-D视频片段的训练数据集。随后,各方法在验证集的496对图像/掩码、测试集的504对图像/掩码以及8段视频片段上进行评估。结果分析结合了图像分割的定量评价指标与对视频片段的定性分析。参赛情况及实验结果表明,该应用场景具有重要研究价值,且在该任务中使用RGB-D数据仍面临显著挑战。
代码仓库
https://gitlab.com/4ndr3aR/pothole-mix-segmentation
官方
pytorch
GitHub 中提及
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| semantic-segmentation-on-pothole-mix | HCMUS-SegFormer | Test Dice Multiclass: 0 .747 Test mIoU: 0 .628 Validation Dice Multiclass: 0 .637 Validation mIoU: 0 .523 |
| semantic-segmentation-on-pothole-mix | Baseline - DeepLabv3+ | Test Dice Multiclass: 0 .789 Test mIoU: 0 .676 Validation Dice Multiclass: 0 .814 Validation mIoU: 0 .711 |
| semantic-segmentation-on-pothole-mix | HCMUS-CPS-DLU-Net | Test Dice Multiclass: 0 .789 Test mIoU: 0 .677 Validation Dice Multiclass: 0 .763 Validation mIoU: 0 .647 |
| semantic-segmentation-on-pothole-mix | PUCP-Unet++ | Test Dice Multiclass: 0 .832 Test mIoU: 0 .731 Validation Dice Multiclass: 0 .800 Validation mIoU: 0 .694 |
| semantic-segmentation-on-pothole-mix | PUCP-Unet | Test Dice Multiclass: 0 .824 Test mIoU: 0 .720 Validation Dice Multiclass: 0 .804 Validation mIoU: 0 .698 |
| semantic-segmentation-on-pothole-mix | HCMUS-DeepLabv3+ | Test Dice Multiclass: 0 .823 Test mIoU: 0 .719 Validation Dice Multiclass: 0 .802 Validation mIoU: 0 .695 |
| semantic-segmentation-on-pothole-mix | PUCP-MAnet | Test Dice Multiclass: 0 .827 Test mIoU: 0 .725 Validation Dice Multiclass: 0 .810 Validation mIoU: 0 .705 |