3 个月前

胸部X光图像中胸腔疾病长尾分类:一项新的基准研究

胸部X光图像中胸腔疾病长尾分类:一项新的基准研究

摘要

影像检查(如胸部X线摄影)通常会产生一组常见的影像学表现,以及数量更为庞大的罕见表现。尽管经验丰富的放射科医生可以通过学习少数具有代表性的罕见病例,掌握其视觉特征,但让机器从这种“长尾分布”中学习则困难得多,因为标准方法极易偏向于出现频率较高的类别。本文针对胸部X线图像中胸腔疾病领域的长尾学习问题,开展了一项全面的基准研究。我们聚焦于自然分布的胸部X线数据,旨在优化不仅在常见“头部”类别,而且在罕见但至关重要的“尾部”类别上的分类准确率。为实现这一目标,我们提出一个具有挑战性的新型长尾胸部X线图像基准数据集,以推动面向医学图像分类的长尾学习方法研究。该基准包含两个用于19类和20类胸腔疾病分类的胸部X线数据集,其中类别样本数量最多可达53,000张,最少仅有7张标注训练图像。我们在该新基准上评估了多种标准方法与当前最先进的长尾学习方法,深入分析了各类方法在长尾医学图像分类任务中的有效性,并总结出对未来算法设计具有指导意义的洞见。相关数据集、训练模型及代码已开源,详见:https://github.com/VITA-Group/LongTailCXR。

代码仓库

vita-group/longtailcxr
官方
pytorch
GitHub 中提及

基准测试

基准方法指标
long-tail-learning-on-mimic-cxr-ltMixUp
Balanced Accuracy: 0.176
long-tail-learning-on-mimic-cxr-ltReweighted Focal Loss
Balanced Accuracy: 0.239
long-tail-learning-on-mimic-cxr-ltClass-balanced LDAM-DRW
Balanced Accuracy: 0.267
long-tail-learning-on-mimic-cxr-ltClass-balanced Softmax
Balanced Accuracy: 0.227
long-tail-learning-on-mimic-cxr-ltReweighted Softmax
Balanced Accuracy: 0.211
long-tail-learning-on-mimic-cxr-ltSoftmax
Balanced Accuracy: 0.169
long-tail-learning-on-mimic-cxr-ltDecoupling (tau-norm)
Balanced Accuracy: 0.230
long-tail-learning-on-mimic-cxr-ltClass-balanced Focal Loss
Balanced Accuracy: 0.191
long-tail-learning-on-mimic-cxr-ltClass-balanced LDAM
Balanced Accuracy: 0.225
long-tail-learning-on-mimic-cxr-ltReweighted LDAM
Balanced Accuracy: 0.243
long-tail-learning-on-mimic-cxr-ltBalanced-MixUp
Balanced Accuracy: 0.168
long-tail-learning-on-mimic-cxr-ltLDAM
Balanced Accuracy: 0.165
long-tail-learning-on-mimic-cxr-ltFocal Loss
Balanced Accuracy: 0.172
long-tail-learning-on-mimic-cxr-ltReweighted LDAM-DRW
Balanced Accuracy: 0.275
long-tail-learning-on-mimic-cxr-ltDecoupling (cRT)
Balanced Accuracy: 0.296
long-tail-learning-on-nih-cxr-ltReweighted Focal Loss
Balanced Accuracy: 0.197
long-tail-learning-on-nih-cxr-ltFocal Loss
Balanced Accuracy: 0.122
long-tail-learning-on-nih-cxr-ltBalanced-MixUp
Balanced Accuracy: 0.155
long-tail-learning-on-nih-cxr-ltSoftmax
Balanced Accuracy: 0.115
long-tail-learning-on-nih-cxr-ltReweighted LDAM
Balanced Accuracy: 0.279
long-tail-learning-on-nih-cxr-ltLDAM
Balanced Accuracy: 0.178
long-tail-learning-on-nih-cxr-ltClass-balanced LDAM
Balanced Accuracy: 0.235
long-tail-learning-on-nih-cxr-ltDecoupling (cRT)
Balanced Accuracy: 0.294
long-tail-learning-on-nih-cxr-ltReweighted LDAM-DRW
Balanced Accuracy: 0.289
long-tail-learning-on-nih-cxr-ltDecoupling (tau-norm)
Balanced Accuracy: 0.214
long-tail-learning-on-nih-cxr-ltClass-Balanced Focal Loss
Balanced Accuracy: 0.232
long-tail-learning-on-nih-cxr-ltMixUp
Balanced Accuracy: 0.118
long-tail-learning-on-nih-cxr-ltClass-balanced LDAM-DRW
Balanced Accuracy: 0.281
long-tail-learning-on-nih-cxr-ltReweighted Softmax
Balanced Accuracy: 0.260
long-tail-learning-on-nih-cxr-ltClass-Balanced Softmax
Balanced Accuracy: 0.269

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供
胸部X光图像中胸腔疾病长尾分类:一项新的基准研究 | 论文 | HyperAI超神经