4 个月前

重新审视图像金字塔结构在高分辨率显著目标检测中的应用

重新审视图像金字塔结构在高分辨率显著目标检测中的应用

摘要

显著目标检测(SOD)近年来备受关注,但在高分辨率(HR)图像上的研究相对较少。不幸的是,与低分辨率(LR)图像及其注释相比,高分辨率图像及其像素级注释的生成无疑更加耗时费力。因此,我们提出了一种基于图像金字塔的SOD框架——逆向显著性金字塔重建网络(InSPyReNet),该框架无需任何高分辨率数据集即可进行高分辨率预测。我们设计了InSPyReNet以生成严格的显著性图金字塔结构,这使得可以通过基于金字塔的图像融合来组合多个结果。为了实现高分辨率预测,我们设计了一种金字塔融合方法,该方法从同一张图像的不同尺度生成两个不同的图像金字塔,从而克服有效感受野(ERF)差异。我们在公共的低分辨率和高分辨率SOD基准上进行了广泛的评估,结果表明InSPyReNet在各种SOD指标和边界准确性方面均超过了现有最先进(SotA)的方法。

代码仓库

基准测试

基准方法指标
dichotomous-image-segmentation-on-dis-te1InSPyReNet (HR scale)
E-measure: 0.894
HCE: 110
MAE: 0.045
S-Measure: 0.873
max F-Measure: 0.845
weighted F-measure: 0.788
dichotomous-image-segmentation-on-dis-te1InSPyReNet
HCE: 148
S-Measure: 0.862
max F-Measure: 0.834
dichotomous-image-segmentation-on-dis-te2InSPyReNet (HR scale)
HCE: 255
S-Measure: 0.905
max F-Measure: 0.894
dichotomous-image-segmentation-on-dis-te2InSPyReNet
E-measure: 0.925
HCE: 316
MAE: 0.038
S-Measure: 0.893
max F-Measure: 0.881
weighted F-measure: 0.834
dichotomous-image-segmentation-on-dis-te3InSPyReNet (HR scale)
E-measure: 0.938
HCE: 522
MAE: 0.034
S-Measure: 0.918
max F-Measure: 0.919
weighted F-measure: 0.871
dichotomous-image-segmentation-on-dis-te3InSPyReNet
E-measure: 0.938
HCE: 582
MAE: 0.038
S-Measure: 0.902
max F-Measure: 0.904
weighted F-measure: 0.856
dichotomous-image-segmentation-on-dis-te4InSPyReNet
E-measure: 0.926
HCE: 2243
MAE: 0.046
S-Measure: 0.891
max F-Measure: 0.892
weighted F-measure: 0.840
dichotomous-image-segmentation-on-dis-te4InSPyReNet (HR scale)
E-measure: 0.926
HCE: 2336
MAE: 0.042
S-Measure: 0.905
max F-Measure: 0.905
weighted F-measure: 0.848
dichotomous-image-segmentation-on-dis-vdInSPyReNet (HR scale)
HCE: 904
S-Measure: 0.900
max F-Measure: 0.889
dichotomous-image-segmentation-on-dis-vdInSPyReNet
E-measure: 0.921
HCE: 905
MAE: 0.043
S-Measure: 0.887
max F-Measure: 0.876
weighted F-measure: 0.826
rgb-salient-object-detection-on-davis-sInSPyReNet (DUTS, HRSOD)
F-measure: 0.976
S-measure: 0.972
mBA: 0.770
rgb-salient-object-detection-on-davis-sInSPyReNet
F-measure: 0.959
MAE: 0.009
S-measure: 0.962
mBA: 0.743
rgb-salient-object-detection-on-hrsodInSPyReNet (HRSOD, UHRSD)
MAE: 0.018
S-Measure: 0.956
mBA: 0.771
max F-Measure: 0.956
rgb-salient-object-detection-on-hrsodInSPyReNet (DUTS, HRSOD)
MAE: 0.014
S-Measure: 0.960
mBA: 0.766
max F-Measure: 0.957
rgb-salient-object-detection-on-hrsodInSPyReNet
MAE: 0.016
S-Measure: 0.952
mBA: 0.738
max F-Measure: 0.949
rgb-salient-object-detection-on-uhrsdInSPyReNet (HRSOD, UHRSD)
MAE: 0.020
S-Measure: 0.953
mBA: 0.812
max F-Measure: 0.957
rgb-salient-object-detection-on-uhrsdInSPyReNet (DUTS, HRSOD)
S-Measure: 0.936
mBA: 0.785
rgb-salient-object-detection-on-uhrsdInSPyReNet
MAE: 0.029
S-Measure: 0.932
mBA: 0.741
max F-Measure: 0.938
salient-object-detection-on-dut-omronInSPyReNet
F-measure: 0.832
MAE: 0.045
S-Measure: 0.875
salient-object-detection-on-duts-teInSPyReNet
MAE: 0.024
S-Measure: 0.931
max F-measure: 0.892
salient-object-detection-on-ecssdInSPyReNet
F-measure: 0.96
MAE: 0.031
S-Measure: 0.936
salient-object-detection-on-hku-isInSPyReNet
F-measure: 0.955
MAE: 0.028
S-Measure: 0.944
salient-object-detection-on-pascal-sInSPyReNet
F-measure: 0.893
MAE: 0.048
S-Measure: 0.893

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供
重新审视图像金字塔结构在高分辨率显著目标检测中的应用 | 论文 | HyperAI超神经