4 个月前

一种简单而强大的端到端神经RST风格篇章分析基线方法

一种简单而强大的端到端神经RST风格篇章分析基线方法

摘要

为了促进和进一步发展RST(修辞结构理论)式的篇章分析模型,我们需要一个强大的基线模型,该模型可以作为报告可靠实验结果的参考。本文通过整合现有的简单解析策略(自上而下和自下而上)与各种基于变压器的预训练语言模型,探索了一个强大的基线模型。从两个基准数据集获得的实验结果表明,解析性能在很大程度上依赖于预训练语言模型而非解析策略。特别是,当使用DeBERTa时,自下而上的解析器相比当前最佳解析器实现了显著的性能提升。我们进一步分析了句内和跨句解析以及核心性预测,发现采用跨度掩码方案的语言模型特别提升了解析性能。

代码仓库

nttcslab-nlp/rstparser_emnlp22
官方
pytorch
GitHub 中提及

基准测试

基准方法指标
discourse-parsing-on-instructional-dt-instrTop-down (XLNet)
Standard Parseval (Full): 40.2
Standard Parseval (Nuclearity): 55.2
Standard Parseval (Relation): 47.0
Standard Parseval (Span): 74.3
discourse-parsing-on-instructional-dt-instrBottom-up (DeBERTa)
Standard Parseval (Full): 44.4
Standard Parseval (Nuclearity): 60.0
Standard Parseval (Relation): 51.4
Standard Parseval (Span): 77.8
discourse-parsing-on-instructional-dt-instrTop-down (BERT)
Standard Parseval (Full): 30.9
Standard Parseval (Nuclearity): 44.6
Standard Parseval (Relation): 37.6
Standard Parseval (Span): 65.3
discourse-parsing-on-instructional-dt-instrTop-down (SpanBERT)
Standard Parseval (Full): 36.7
Standard Parseval (Nuclearity): 54.5
Standard Parseval (Relation): 42.7
Standard Parseval (Span): 73.7
discourse-parsing-on-instructional-dt-instrTop-down (DeBERTa)
Standard Parseval (Full): 43.4
Standard Parseval (Nuclearity): 57.9
Standard Parseval (Relation): 50.0
Standard Parseval (Span): 77.3
discourse-parsing-on-instructional-dt-instrBottom-up (SpanBERT)
Standard Parseval (Full): 40.5
Standard Parseval (Nuclearity): 53.8
Standard Parseval (Relation): 46.0
Standard Parseval (Span): 72.9
discourse-parsing-on-instructional-dt-instrTop-down (RoBERTa)
Standard Parseval (Full): 41.5
Standard Parseval (Nuclearity): 56.1
Standard Parseval (Relation): 48.7
Standard Parseval (Span): 75.7
discourse-parsing-on-instructional-dt-instrBottom-up (BERT)
Standard Parseval (Full): 32.9
Standard Parseval (Nuclearity): 46.3
Standard Parseval (Relation): 39.5
Standard Parseval (Span): 66.6
discourse-parsing-on-instructional-dt-instrBottom-up (XLNet)
Standard Parseval (Full): 40.7
Standard Parseval (Nuclearity): 56.4
Standard Parseval (Relation): 47.4
Standard Parseval (Span): 73.6
discourse-parsing-on-instructional-dt-instrBottom-up (RoBERTa)
Standard Parseval (Full): 41.4
Standard Parseval (Nuclearity): 55.5
Standard Parseval (Relation): 47.9
Standard Parseval (Span): 73.2
discourse-parsing-on-rst-dtTop-down (XLNet)
Standard Parseval (Full): 54.8
Standard Parseval (Nuclearity): 67.4
Standard Parseval (Relation): 57.0
Standard Parseval (Span): 77.8
discourse-parsing-on-rst-dtTop-down (SpanBERT)
Standard Parseval (Full): 52.2
Standard Parseval (Nuclearity): 65.4
Standard Parseval (Relation): 54.5
Standard Parseval (Span): 76.5
discourse-parsing-on-rst-dtBottom-up (DeBERTa)
Standard Parseval (Full): 55.4 ± 0.4
Standard Parseval (Nuclearity): 68.0 ± 0.5
Standard Parseval (Relation): 57.3 ± 0.2
Standard Parseval (Span): 77.8 ± 0.3
discourse-parsing-on-rst-dtBottom-up (RoBERTa)
Standard Parseval (Full): 53.7
Standard Parseval (Nuclearity): 66.5
Standard Parseval (Relation): 55.4
Standard Parseval (Span): 76.1
discourse-parsing-on-rst-dtBottom-up (SpanBERT)
Standard Parseval (Full): 52.7
Standard Parseval (Nuclearity): 65.3
Standard Parseval (Relation): 54.9
discourse-parsing-on-rst-dtTop-down (DeBERTa)
Standard Parseval (Full): 54.4
Standard Parseval (Nuclearity): 67.9
Standard Parseval (Relation): 56.6
Standard Parseval (Span): 78.5
discourse-parsing-on-rst-dtBottom-up (XLNet)
Standard Parseval (Full): 54.2
Standard Parseval (Nuclearity): 65.9
Standard Parseval (Relation): 56.3
discourse-parsing-on-rst-dtTop-down (RoBERTa)
Standard Parseval (Full): 53.8
Standard Parseval (Nuclearity): 66.6
Standard Parseval (Relation): 55.8
Standard Parseval (Span): 77.3
discourse-parsing-on-rst-dtTop-down (BERT)
Standard Parseval (Full): 46.6
Standard Parseval (Nuclearity): 59.1
Standard Parseval (Relation): 48.3
Standard Parseval (Span): 69.8
discourse-parsing-on-rst-dtBottom-up (BERT)
Standard Parseval (Full): 46.0
Standard Parseval (Nuclearity): 57.8
Standard Parseval (Relation): 47.8
Standard Parseval (Span): 68.3

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供
一种简单而强大的端到端神经RST风格篇章分析基线方法 | 论文 | HyperAI超神经