3 个月前

Dense FixMatch:一种用于像素级预测任务的简单半监督学习方法

Dense FixMatch:一种用于像素级预测任务的简单半监督学习方法

摘要

我们提出了一种名为Dense FixMatch的简单方法,用于密集且结构化预测任务的在线半监督学习。该方法通过强数据增强结合伪标签生成与一致性正则化,实现高效学习。为将FixMatch应用于图像分类以外的半监督学习任务,我们在伪标签上引入了匹配操作,从而能够充分利用数据增强流水线的全部能力,包括几何变换等复杂操作。我们在Cityscapes和Pascal VOC数据集上的半监督语义分割任务中进行了评估,采用不同比例的标注数据,并对模型设计选择与超参数进行了消融分析。实验结果表明,Dense FixMatch在仅使用四分之一标注样本的情况下,显著优于仅依赖标注数据的监督学习方法,性能已接近全监督学习的水平。

代码仓库

miquelmarti/DenseFixMatch
官方
pytorch
GitHub 中提及

基准测试

基准方法指标
semi-supervised-semantic-segmentation-on-15Dense FixMatch (DeepLabv3+ ResNet-101, over-sampling, single pass eval)
Validation mIoU: 74.73%
semi-supervised-semantic-segmentation-on-15Dense FixMatch (DeepLabv3+ ResNet-50, over-sampling, single pass eval)
Validation mIoU: 71.69%
semi-supervised-semantic-segmentation-on-2Dense FixMatch (DeepLabv3+ ResNet-101, uniform sampling, single pass eval)
Validation mIoU: 73.91%
semi-supervised-semantic-segmentation-on-2Dense FixMatch (DeepLabv3+ ResNet-50, uniform sampling, single pass eval)
Validation mIoU: 73.39%
semi-supervised-semantic-segmentation-on-21Dense FixMatch (DeepLabv3+ ResNet-50, over-sampling, single pass eval)
Validation mIoU: 52.15
semi-supervised-semantic-segmentation-on-21Dense FixMatch (DeepLabv3+ ResNet-101, over-sampling, single pass eval)
Validation mIoU: 54.85
semi-supervised-semantic-segmentation-on-22Dense FixMatch (DeepLabv3+ ResNet-101, over-sampling, single pass eval)
Validation mIoU: 71.1%
semi-supervised-semantic-segmentation-on-22Dense FixMatch (DeepLabv3+ ResNet-50, uniform sampling, single pass eval)
Validation mIoU: 70.65%
semi-supervised-semantic-segmentation-on-35Dense FixMatch (DeepLabv3+ ResNet-101, over-sampling, single pass eval)
Validation mIoU: 66.97
semi-supervised-semantic-segmentation-on-35Dense FixMatch (DeepLabv3+ ResNet-50, over-sampling, single-pass eval)
Validation mIoU: 65.81
semi-supervised-semantic-segmentation-on-4Dense FixMatch (DeepLabv3+ ResNet-101, over-sampling, single pass eval)
Validation mIoU: 65.82%
semi-supervised-semantic-segmentation-on-4Dense FixMatch (DeepLabv3+ ResNet-50, over-sampling, single pass eval)
Validation mIoU: 62.49%
semi-supervised-semantic-segmentation-on-40Dense FixMatch (DeepLabv3+ ResNet-101, over-sampling, single pass eval)
Validation mIoU: 80.82
semi-supervised-semantic-segmentation-on-40Dense FixMatch (DeepLabv3+ ResNet-50, over-sampling, single pass eval)
Validation mIoU: 79.98
semi-supervised-semantic-segmentation-on-9Dense FixMatch (DeepLabv3+ ResNet-101, over-sampling, single pass eval)
Validation mIoU: 72.04
semi-supervised-semantic-segmentation-on-9Dense FixMatch (DeepLabv3+ ResNet-50, over-sampling, single pass eval)
Validation mIoU: 69.02

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供
Dense FixMatch:一种用于像素级预测任务的简单半监督学习方法 | 论文 | HyperAI超神经