4 个月前

H3WB:Human3.6M 3D 全身数据集和基准测试

H3WB:Human3.6M 3D 全身数据集和基准测试

摘要

我们提出了一项针对3D人体全身姿态估计的基准测试,该测试涉及在整个人体上识别准确的3D关键点,包括面部、手部、躯干和脚部。目前,由于缺乏完全注释且准确的3D全身数据集,深度网络通常需要分别在特定身体部位上进行训练,然后在推理过程中将这些部分组合起来。或者它们依赖于参数化人体模型提供的伪真实数据,但这些数据不如基于检测的方法准确。为了解决这些问题,我们引入了Human3.6M 3D 全身(H3WB)数据集,该数据集使用COCO 全身布局为Human3.6M 数据集提供了全身注释。H3WB 包含10万张图像上的133个全身关键点注释,这得益于我们新开发的多视图管道。此外,我们提出了三项任务:i) 从2D 完整全身姿态提升至3D 全身姿态;ii) 从2D 不完整全身姿态提升至3D 全身姿态;iii) 从单个RGB 图像中估计3D 全身姿态。我们还报告了这些任务中几种流行方法的基线结果。此外,我们还提供了TotalCapture 的自动化3D 全身注释,并通过实验表明,将其与H3WB 结合使用可以提高性能。代码和数据集可在 https://github.com/wholebody3d/wholebody3d 获取。

代码仓库

wholebody3d/wholebody3d
官方
pytorch
GitHub 中提及

基准测试

基准方法指标
3d-facial-landmark-localization-on-h3wbSimpleBaseline
Average MPJPE (mm): 34.0
3d-facial-landmark-localization-on-h3wbCanonPose
Average MPJPE (mm): 31.9
3d-facial-landmark-localization-on-h3wbSHN + SimpleBaseline
Average MPJPE (mm): 32.5
3d-facial-landmark-localization-on-h3wbCPN + Jointformer
Average MPJPE (mm): 20.7
3d-facial-landmark-localization-on-h3wbJointformer
Average MPJPE (mm): 19.8
3d-facial-landmark-localization-on-h3wbSimpleBaseline
Average MPJPE (mm): 24.6
3d-facial-landmark-localization-on-h3wbCanonPose
Average MPJPE (mm): 24.6
3d-facial-landmark-localization-on-h3wbCanonPose + 3D supervision
Average MPJPE (mm): 22.2
3d-facial-landmark-localization-on-h3wbResnet50
Average MPJPE (mm): 26.3
3d-facial-landmark-localization-on-h3wbLarge SimpleBaseline
Average MPJPE (mm): 14.6
3d-facial-landmark-localization-on-h3wbLarge SimpleBaseline
Average MPJPE (mm): 19.8
3d-facial-landmark-localization-on-h3wbCanonPose + 3D supervision
Average MPJPE (mm): 17.9
3d-facial-landmark-localization-on-h3wbJointformer
Average MPJPE (mm): 17.8
3d-hand-pose-estimation-on-h3wbLarge SimpleBaseline
Average MPJPE (mm): 44.8
3d-hand-pose-estimation-on-h3wbCPN + Jointformer
Average MPJPE (mm): 56.9
3d-hand-pose-estimation-on-h3wbSimpleBaseline
Average MPJPE (mm): 83.4
3d-hand-pose-estimation-on-h3wbLarge SimpleBaseline
Average MPJPE (mm): 31.7
3d-hand-pose-estimation-on-h3wbJointformer
Average MPJPE (mm): 43.7
3d-hand-pose-estimation-on-h3wbSimpleBaseline
Average MPJPE (mm): 42.5
3d-hand-pose-estimation-on-h3wbSHN + SimpleBaseline
Average MPJPE (mm): 64.3
3d-hand-pose-estimation-on-h3wbCanonPose + 3D supervision
Average MPJPE (mm): 47.4
3d-hand-pose-estimation-on-h3wbCanonPose
Average MPJPE (mm): 48.9
3d-hand-pose-estimation-on-h3wbResnet50
Average MPJPE (mm): 63.1
3d-hand-pose-estimation-on-h3wbJointformer
Average MPJPE (mm): 53.5
3d-hand-pose-estimation-on-h3wbCanonPose
Average MPJPE (mm): 56.2
3d-hand-pose-estimation-on-h3wbCanonPose + 3D supervision
Average MPJPE (mm): 38.3
3d-human-pose-estimation-on-h3wbCanonPose
MPJPE: 193.7
3d-human-pose-estimation-on-h3wbCPN + Jointformer
MPJPE: 142.8
3d-human-pose-estimation-on-h3wbJointformer
MPJPE: 103.0
3d-human-pose-estimation-on-h3wbLarge SimpleBaseline
MPJPE: 131.6
3d-human-pose-estimation-on-h3wbCanonPose
MPJPE: 264.4
3d-human-pose-estimation-on-h3wbCanonPose + 3D supervision
MPJPE: 155.9
3d-human-pose-estimation-on-h3wbLarge SimpleBaseline
MPJPE: 112.6
3d-human-pose-estimation-on-h3wbCanonPose + 3D supervision
MPJPE: 117.5
3d-human-pose-estimation-on-h3wbResnet50
MPJPE: 151.6
3d-human-pose-estimation-on-h3wbSimpleBaseline
MPJPE: 252.0
3d-human-pose-estimation-on-h3wbJointformer
MPJPE: 84.9
3d-human-pose-estimation-on-h3wbSHN + SimpleBaseline
MPJPE: 189.6
3d-human-pose-estimation-on-h3wbSimpleBaseline
MPJPE: 125.7

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供
H3WB:Human3.6M 3D 全身数据集和基准测试 | 论文 | HyperAI超神经