
摘要
开放信息抽取(Open Information Extraction, OpenIE)旨在从开放领域句子中提取关系三元组。传统的基于规则或统计的模型通常依赖于句法解析器识别出的句子句法结构进行构建。然而,以往的神经网络OpenIE模型未能充分挖掘有用的句法信息。本文提出将句法成分树(constituency tree)与依存树(dependency tree)均建模为词级别的图结构,使神经OpenIE模型能够从句法结构中学习。为更有效地融合来自两种图结构的异构信息,我们采用多视图学习方法,以捕捉二者之间的多重关系。最终,经过微调的成分树与依存树表示与句子语义表示相结合,用于三元组生成。实验结果表明,成分结构与依存结构信息,以及多视图学习机制均具有显著有效性。
代码仓库
daviddongkc/smile_oie
官方
GitHub 中提及
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| open-information-extraction-on-lsoie-wiki | BERT + Dep-GCN - Const-GCN | F1: 50.21 |
| open-information-extraction-on-lsoie-wiki | IMoJIE Kolluru et al. (2020) | F1: 49.24 |
| open-information-extraction-on-lsoie-wiki | GloVe + bi-LSTM + CRF | F1: 44.48 |
| open-information-extraction-on-lsoie-wiki | BERT Solawetz and Larson (2021) | F1: 47.54 |
| open-information-extraction-on-lsoie-wiki | BERT + Dep-GCN [?] Const-GCN | F1: 49.89 |
| open-information-extraction-on-lsoie-wiki | CopyAttention Cui et al. (2018) | F1: 39.52 |
| open-information-extraction-on-lsoie-wiki | CIGL-OIE + IGL-CA Kolluru et al. (2020) | F1: 44.75 |
| open-information-extraction-on-lsoie-wiki | BERT + Dep-GCN | F1: 48.71 |
| open-information-extraction-on-lsoie-wiki | BERT + Const-GCN | F1: 49.71 |
| open-information-extraction-on-lsoie-wiki | SMiLe-OIE | F1: 51.73 |
| open-information-extraction-on-lsoie-wiki | GloVe + bi-LSTM Stanovsky et al. (2018) | F1: 43.9 |