4 个月前

InternVideo:通过生成式和判别式学习构建通用视频基础模型

InternVideo:通过生成式和判别式学习构建通用视频基础模型

摘要

基础模型在计算机视觉领域的各种下游任务中最近表现出色。然而,现有的大多数视觉基础模型仅关注图像级别的预训练和适应,这在动态和复杂的视频级别理解任务中存在局限性。为填补这一空白,我们提出了通用视频基础模型——InternVideo,该模型结合了生成式和判别式自监督视频学习的优势。具体而言,InternVideo高效地探索了掩码视频建模和视频-语言对比学习作为预训练目标,并以可学习的方式有选择地协调这两种互补框架的视频表示,以提升多种视频应用的性能。无需复杂的附加组件,InternVideo在涵盖视频动作识别/检测、视频-语言对齐以及开放世界视频应用等广泛任务的39个视频数据集上取得了最先进的性能。特别是,我们的方法在具有挑战性的Kinetics-400和Something-Something V2基准测试中分别获得了91.1%和77.2%的Top-1准确率。所有这些结果都有效证明了我们的InternVideo在视频理解方面的通用性。代码将在https://github.com/OpenGVLab/InternVideo 上发布。

代码仓库

opengvlab/internvideo
官方
pytorch
GitHub 中提及
yingsen1/unimd
pytorch
GitHub 中提及

基准测试

基准方法指标
action-classification-on-kinetics-400InternVideo
Acc@1: 91.1
action-classification-on-kinetics-600InternVideo-T
Top-1 Accuracy: 91.3
action-classification-on-kinetics-700InternVideo-T
Top-1 Accuracy: 84.0
action-recognition-in-videos-on-somethingInternVideo
Top-1 Accuracy: 77.2
action-recognition-in-videos-on-something-1InternVideo
Top 1 Accuracy: 70.0
action-recognition-on-ava-v2-2InternVideo
mAP: 41.01
open-set-action-recognition-on-ucf-hmdbInternVideo
AUROC: 85.48
open-set-action-recognition-on-ucf101-mitv2InternVideo
AUROC: 91.85
spatio-temporal-action-localization-on-avaInternVideo
val mAP: 41.01
temporal-action-localization-on-activitynetInternVideo
mAP: 39.00
temporal-action-localization-on-fineactionInternVideo
mAP: 17.57
temporal-action-localization-on-hacsInternVideo
Average-mAP: 41.55
temporal-action-localization-on-thumos14ActionFormer (InternVideo features)
Avg mAP (0.3:0.7): 71.58
video-question-answering-on-situatedInternVideo
Average Accuracy: 58.7
video-retrieval-on-activitynetInternVideo
text-to-video R@1: 62.2
video-to-text R@1: 62.8
video-retrieval-on-didemoInternVideo
text-to-video R@1: 57.9
video-to-text R@1: 59.1
video-retrieval-on-lsmdcInternVideo
text-to-video R@1: 34.0
video-to-text R@1: 34.9
video-retrieval-on-msr-vttInternVideo
text-to-video R@1: 55.2
video-to-text R@1: 57.9
video-retrieval-on-msvdInternVideo
text-to-video R@1: 58.4
video-to-text R@1: 76.3
video-retrieval-on-vatexInternVideo
text-to-video R@1: 71.1
video-to-text R@1: 87.2
visual-question-answering-on-msrvtt-qa-1InternVideo
Accuracy: 0.471
visual-question-answering-on-msvd-qa-1InternVideo
Accuracy: 0.555
visual-question-answering-on-tgif-qaInternVideo
Accuracy: 0.722
zero-shot-video-question-answer-on-egoschema-1InternVideo
Accuracy: 32.1
zero-shot-video-question-answer-on-starInternVideo
Accuracy: 41.6
zero-shot-video-question-answer-on-tvqaInternVideo (no speech)
Accuracy: 35.9
zero-shot-video-retrieval-on-activitynetInternVideo
text-to-video R@1: 30.7
video-to-text R@1: 31.4
zero-shot-video-retrieval-on-didemoInternVideo
text-to-video R@1: 31.5
text-to-video R@10: 68.2
text-to-video R@5: 57.6
video-to-text R@1: 33.5
video-to-text R@10: 71.1
video-to-text R@5: 60.3
zero-shot-video-retrieval-on-lsmdcInternVideo
text-to-video R@1: 17.6
text-to-video R@10: 40.2
text-to-video R@5: 32.4
video-to-text R@1: 13.2
video-to-text R@10: 34.9
video-to-text R@5: 27.8
zero-shot-video-retrieval-on-msr-vttInternVideo
text-to-video R@1: 40.7
video-to-text R@1: 39.6
zero-shot-video-retrieval-on-msvdInternVideo
text-to-video R@1: 43.4
video-to-text R@1: 67.6
zero-shot-video-retrieval-on-vatexInternVideo
text-to-video R@1: 49.5
video-to-text R@1: 69.5

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供
InternVideo:通过生成式和判别式学习构建通用视频基础模型 | 论文 | HyperAI超神经