3 个月前

动态扩展架构中类别增量学习的任务混淆问题解决

动态扩展架构中类别增量学习的任务混淆问题解决

摘要

动态扩展架构在类别增量学习中日益流行,主要得益于其在缓解灾难性遗忘方面的显著优势。然而,该框架对任务混淆问题的评估仍不充分,例如:不同任务间类别的差异未能得到充分学习(即任务间混淆,Inter-Task Confusion, ITC),同时对最新一类批次仍存在优先倾向(即旧-新混淆,Old-New Confusion, ONC)。本文通过实验验证了这两种混淆带来的负面效应。为此,我们提出一种新颖的解决方案——任务相关增量学习(Task Correlated Incremental Learning, TCIL),旨在促进跨任务间特征的区分性与公平性利用。TCIL采用多层次知识蒸馏机制,将旧任务中学习到的知识有效传递至新任务。该方法在特征层与logit层均构建信息传递路径,使模型在学习新任务时能够感知旧类别信息。此外,引入注意力机制与分类器重评分策略,以生成更为公平的分类得分。我们在CIFAR100与ImageNet100数据集上进行了大量实验,结果表明,TCIL在各项指标上均持续达到当前最优性能。该方法有效缓解了ITC与ONC问题,即使在未使用回放记忆(rehearsal memory)的情况下,仍展现出对灾难性遗忘的强大抵御能力。

代码仓库

yellowpancake/tcil
官方
pytorch
GitHub 中提及

基准测试

基准方法指标
incremental-learning-on-cifar-100-50-classes-2TCIL-Lite
Average Incremental Accuracy: 73.50
incremental-learning-on-cifar-100-50-classes-2TCIL
Average Incremental Accuracy: 73.72
incremental-learning-on-cifar-100-50-classes-3TCIL-Lite
Average Incremental Accuracy: 74.30
incremental-learning-on-cifar-100-50-classes-3TCIL
Average Incremental Accuracy: 74.88
incremental-learning-on-cifar-100-50-classes-4TCIL
Average Incremental Accuracy: 76.42
incremental-learning-on-cifar-100-50-classes-4TCIL-Lite
Average Incremental Accuracy: 74.95
incremental-learning-on-cifar-100-b0-5stepsTCIL
Average Incremental Accuracy: 77.72
incremental-learning-on-cifar-100-b0-5stepsTCIL-Lite
Average Incremental Accuracy: 76.96
incremental-learning-on-cifar100-b0-10stepsTCIL-Lite
Average Incremental Accuracy: 76.74
incremental-learning-on-cifar100-b0-10stepsTCIL
Average Incremental Accuracy: 77.30
incremental-learning-on-cifar100b020stepTCIL
Average Incremental Accuracy: 75.11
incremental-learning-on-cifar100b020stepTCIL-Lite
Average Incremental Accuracy: 75.47
incremental-learning-on-imagenet100-10-stepsTCIL
# M Params: 116.54
Average Incremental Accuracy: 77.66
Average Incremental Accuracy Top-5: 94.17
Final Accuracy: 67.34
Final Accuracy Top-5: 88.84
incremental-learning-on-imagenet100-10-stepsTCIL-Lite
# M Params: 26.36
Average Incremental Accuracy: 77.50
Average Incremental Accuracy Top-5: 93.60
Final Accuracy: 67.30
Final Accuracy Top-5: 87.94

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供
动态扩展架构中类别增量学习的任务混淆问题解决 | 论文 | HyperAI超神经