
摘要
主流的3D表征学习方法建立在对比或生成建模的预训练任务之上,在各种下游任务中取得了显著的性能提升。然而,我们发现这两种范式具有不同的特性:(i) 对比模型对数据量有较高需求,容易出现表征过拟合问题;(ii) 生成模型存在数据填充问题,其数据扩展能力相比对比模型较差。这促使我们尝试结合两种范式的优点来学习3D表征,但由于两者之间的模式差异,这一目标并不容易实现。在本文中,我们提出了一种名为“重构对比”(ReCon)的方法,该方法统一了这两种范式。ReCon通过集成蒸馏技术从生成建模教师和单模态/跨模态对比教师中学习,其中生成学生指导对比学生。我们设计了一种编码器-解码器风格的ReCon模块,通过带有停止梯度的交叉注意力机制传递知识,从而避免了预训练过拟合和模式差异问题。ReCon在3D表征学习方面达到了新的最先进水平,例如在ScanObjectNN数据集上实现了91.26%的准确率。代码已发布在 https://github.com/qizekun/ReCon。
代码仓库
aHapBean/PCP-MAE
pytorch
GitHub 中提及
asterisci/point-gcc
pytorch
GitHub 中提及
qizekun/ReCon
官方
pytorch
GitHub 中提及
qizekun/vpp
pytorch
GitHub 中提及
runpeidong/act
pytorch
GitHub 中提及
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| 3d-point-cloud-classification-on-modelnet40 | ReCon | Overall Accuracy: 94.7 |
| 3d-point-cloud-classification-on-scanobjectnn | ReCon (no voting) | OBJ-BG (OA): 95.18 OBJ-ONLY (OA): 93.29 Overall Accuracy: 90.63 |
| 3d-point-cloud-classification-on-scanobjectnn | ReCon | OBJ-BG (OA): 95.35 OBJ-ONLY (OA): 93.80 Overall Accuracy: 91.26 |
| 3d-point-cloud-linear-classification-on | ReCon | Overall Accuracy: 93.4 |
| few-shot-3d-point-cloud-classification-on-1 | ReCon | Overall Accuracy: 97.3 Standard Deviation: 1.9 |
| few-shot-3d-point-cloud-classification-on-2 | ReCon | Overall Accuracy: 98.9 Standard Deviation: 1.2 |
| few-shot-3d-point-cloud-classification-on-3 | ReCon | Overall Accuracy: 93.3 Standard Deviation: 3.9 |
| few-shot-3d-point-cloud-classification-on-4 | ReCon | Overall Accuracy: 95.8 Standard Deviation: 3.0 |
| zero-shot-transfer-3d-point-cloud | ReCon | Accuracy (%): 61.7 |
| zero-shot-transfer-3d-point-cloud-1 | ReCon | Accuracy (%): 75.6 |
| zero-shot-transfer-3d-point-cloud-2 | ReCon | OBJ_BG Accuracy(%): 40.4 OBJ_ONLY Accuracy(%): 43.7 PB_T50_RS Accuracy (%): 30.5 |