
摘要
高分辨率(VHR)遥感图像变化检测(Change Detection, CD)因其丰富的空间信息和样本不平衡问题,一直是一项极具挑战性的任务。本文提出了一种分层变化引导图网络(Hierarchical Change Guiding Map Network, HCGMNet)用于变化检测。该模型采用分层卷积操作提取多尺度特征,并通过逐层融合多尺度特征,有效增强全局与局部信息的表达能力。同时,引入变化引导模块(Change Guide Module, CGM),该模块基于带有变化引导图的自注意力机制,引导模型逐步优化边缘特征并提升整体检测性能。在两个典型变化检测数据集上的大量实验结果表明,所提出的HCGMNet架构在变化检测性能上优于现有的最先进(State-of-the-Art, SOTA)方法。
代码仓库
ChengxiHAN/HCGMNet-CD
官方
pytorch
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| change-detection-on-cdd-dataset-season-1 | HCGMNet | F1: 95.07 F1-Score: 95.07 IoU: 90.60 KC: 94.40 Overall Accuracy: 98.82 Precision: 93.84 Recall: 96.34 |
| change-detection-on-dsifn-cd | HCGMNet | F1: 55.00 IoU: 37.93 KC: 41.53 Overall Accuracy: 76.26 Precision: 40.57 Recall: 85.35 |
| change-detection-on-googlegz-cd | HCGMNet | F1: 85.71 IoU: 74.99 KC: 80.94 Overal Accuracy: 92.85 Precision: 84.25 Recall: 87.22 |
| change-detection-on-levir | HCGMNet | F1: 82.37 IoU: 70.03 KC: 81.63 OA: 98.57 Prcision: 82.81 Recall: 81.94 |
| change-detection-on-levir-cd | HCGMNet | F1: 91.77 F1-score: 91.77 IoU: 84.79 Overall Accuracy: 99.18 Precision: 92.96 Recall: 90.61 |
| change-detection-on-s2looking | HCGMNet | F1: 63.87 F1-Score: 63.87 IoU: 46.91 KC: 63.48 OA: 99.22 Precision: 72.51 Recall: 57.06 |
| change-detection-on-sysu-cd | HCGMNet | F1: 79.76 IoU: 66.33 KC: 74.11 OA: 91.12 Precision: 86.28 Recall: 74.15 |
| change-detection-on-whu-cd | HCGMNet | F1: 92.08 IoU: 85.33 KC: 91.80 Overall Accuracy: 99.45 Precision: 93.93 Recall: 90.31 |