
摘要
图Transformer作为一种新兴的架构,在多种图学习与表示任务中展现出巨大潜力。尽管取得了显著成功,但如何在保持与消息传递网络相当的准确率的前提下,将图Transformer扩展至大规模图,仍是当前面临的重大挑战。本文提出Exphormer,一种用于构建强大且可扩展图Transformer的框架。Exphormer采用基于两种机制的稀疏注意力机制:虚拟全局节点(virtual global nodes)与扩展图(expander graphs)。这两种机制所具备的数学特性——如谱扩张性(spectral expansion)、伪随机性(pseudorandomness)以及稀疏性——使得所构建的图Transformer在计算复杂度上仅与图的规模呈线性关系,同时能够证明所得到的Transformer模型具备理想的理论性质。实验结果表明,将Exphormer集成到近期提出的GraphGPS框架中,可在多种图数据集上取得具有竞争力的实证性能,其中在三个数据集上达到了当前最优(state-of-the-art)结果。此外,我们还验证了Exphormer在处理比以往图Transformer架构更大规模图数据时仍具备良好的可扩展性。相关代码已开源,地址为:\url{https://github.com/hamed1375/Exphormer}。
代码仓库
hamed1375/exphormer
官方
pytorch
GitHub 中提及
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| graph-classification-on-cifar10-100k | Exphormer | Accuracy (%): 74.754±0.194 |
| graph-classification-on-malnet-tiny | Exphormer | Accuracy: 94.02±0.209 |
| graph-classification-on-mnist | Exphormer | Accuracy: 98.414±0.038 |
| graph-classification-on-peptides-func | Exphormer | AP: 0.6527±0.0043 |
| graph-regression-on-peptides-struct | Exphormer | MAE: 0.2481±0.0007 |
| link-prediction-on-pcqm-contact | Exphormer | MRR: 0.3637±0.0020 |
| node-classification-on-amz-photo | Exphormer | Accuracy: 95.35±0.22% |
| node-classification-on-cluster | Exphormer | Accuracy: 78.22±0.045 |
| node-classification-on-coauthor-cs | Exphormer | Accuracy: 94.93±0.46% |
| node-classification-on-coauthor-physics | Exphormer | Accuracy: 96.89±0.09% |
| node-classification-on-coco-sp | Exphormer | macro F1: 0.343±0.0008 |
| node-classification-on-pascalvoc-sp-1 | Exphormer | macro F1: 0.396±0.0027 |
| node-classification-on-pattern | Exphormer | Accuracy: 86.74 |