3 个月前

LaMini-LM:基于大规模指令的多样化蒸馏模型集群

LaMini-LM:基于大规模指令的多样化蒸馏模型集群

摘要

经过指令微调的大规模语言模型(LLMs)展现出卓越的生成能力。然而,这类模型通常对计算资源需求较高。为缓解这一问题,我们探索将指令微调后的大型语言模型的知识蒸馏到更小型的模型中。为此,我们精心构建了一个包含258万条指令的大规模指令数据集,其中既包含现有指令,也包含新生成的指令。除了数据量庞大之外,我们还特别设计指令内容以覆盖广泛的主题,确保数据集的多样性。对指令数据集的深入分析验证了其丰富的多样性,随后我们使用gpt-3.5-turbo为这些指令生成相应回答。基于这些高质量指令,我们对一系列不同架构和规模的模型进行了微调,统称为LaMini-LM。该模型集合涵盖编码器-解码器架构和仅解码器架构的多种模型。我们在15个不同的自然语言处理(NLP)基准上,通过自动评估指标以及人工评估两种方式,对模型性能进行了全面测试。实验结果表明,所提出的LaMini-LM模型在性能上可与主流基线模型相媲美,同时模型规模显著更小,具备更高的资源效率。

代码仓库

mbzuai-nlp/lamini-lm
官方
GitHub 中提及

基准测试

基准方法指标
common-sense-reasoning-on-winograndeFLAN-T5-Large 783M
Accuracy: 59.9
common-sense-reasoning-on-winograndeLaMini-GPT 1.5B
Accuracy: 56
common-sense-reasoning-on-winograndeLaMini-T5 738M
Accuracy: 54.9
common-sense-reasoning-on-winograndeT5-Large 738M
Accuracy: 55.2
common-sense-reasoning-on-winograndeGPT-2-XL 1.5B
Accuracy: 58.3
common-sense-reasoning-on-winograndeLaMini-F-T5 783M
Accuracy: 56
coreference-resolution-on-winograd-schemaT5-Large 738M
Accuracy: 66.7
coreference-resolution-on-winograd-schemaGPT-2-XL 1.5B
Accuracy: 73.3
coreference-resolution-on-winograd-schemaLaMini-F-T5 783M
Accuracy: 64.1
coreference-resolution-on-winograd-schemaLaMini-GPT 1.5B
Accuracy: 69.6
coreference-resolution-on-winograd-schemaLaMini-T5 738M
Accuracy: 59
natural-language-inference-on-multinliGPT-2-XL 1.5B
Matched: 36.5
Mismatched: 37
natural-language-inference-on-multinliT5-Large 738M
Matched: 72.4
Mismatched: 72
natural-language-inference-on-multinliLaMini-F-T5 783M
Matched: 61.4
Mismatched: 61
natural-language-inference-on-multinliLaMini-GPT 1.5B
Matched: 67.5
Mismatched: 69.3
natural-language-inference-on-multinliLaMini-T5 738M
Matched: 54.7
Mismatched: 55.8
natural-language-inference-on-rteLaMini-F-T5 783M
Accuracy: 65%
natural-language-inference-on-rteGPT-2-XL 1.5B
Accuracy: 52.3%
natural-language-inference-on-rteLaMini-T5 738M
Accuracy: 57%
natural-language-inference-on-rteT5-Large 738M
Accuracy: 87.4%
natural-language-inference-on-rteLaMini-GPT 1.5B
Accuracy: 67.9%
question-answering-on-openbookqaFLAN-T5-Large 783M
Accuracy: 31.2
question-answering-on-openbookqaLaMini-F-T5 783M
Accuracy: 34
question-answering-on-openbookqaLaMini-T5 738M
Accuracy: 36
question-answering-on-openbookqaT5-Large 738M
Accuracy: 32.8
question-answering-on-openbookqaGPT-2-XL 1.5B
Accuracy: 32
question-answering-on-openbookqaLaMini-GPT 1.5B
Accuracy: 39.8
question-answering-on-piqaGPT-2-XL 1.5B
Accuracy: 70.5
question-answering-on-piqaLaMini-F-T5 783M
Accuracy: 70.6
question-answering-on-piqaLaMini-GPT 1.5B
Accuracy: 71.3
question-answering-on-piqaLaMini-T5 738M
Accuracy: 67.2
question-answering-on-piqaT5-Large 738M
Accuracy: 55.9
question-answering-on-piqaFLAN-T5-Large 783M
Accuracy: 72.2
word-sense-disambiguation-on-words-in-contextGPT-2-XL 1.5B
Accuracy: 49.8
word-sense-disambiguation-on-words-in-contextLaMini-GPT 1.5B
Accuracy: 52.4
word-sense-disambiguation-on-words-in-contextFLAN-T5-Large 783M
Accuracy: 64.7
word-sense-disambiguation-on-words-in-contextLaMini-F-T5 783M
Accuracy: 63.8
word-sense-disambiguation-on-words-in-contextLaMini-T5 738M
Accuracy: 50.5

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供
LaMini-LM:基于大规模指令的多样化蒸馏模型集群 | 论文 | HyperAI超神经