
摘要
端到端驾驶系统近年来取得了快速进展,特别是在CARLA平台上。尽管这些系统的主贡献显著,但它们也对次要系统组件进行了改动。因此,改进的来源并不明确。我们识别出几乎在所有最先进方法中反复出现并对于CARLA上观察到的进展至关重要的两个偏差:(1)通过强烈的归纳偏差实现横向恢复以跟随目标点;(2)通过多模态航路点预测的纵向平均来减速。我们研究了这些偏差的缺点,并提出了有原则的替代方案。通过融入我们的见解,我们开发了TF++,这是一种简单的端到端方法,在Longest6和LAV基准测试中排名第一,在Longest6上的驾驶评分比之前最佳工作提高了11分。
代码仓库
autonomousvision/carla_garage
官方
pytorch
GitHub 中提及
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| autonomous-driving-on-carla-leaderboard | TF++ WP | Driving Score: 66.32 Infraction penalty: 0.84 Route Completion: 78.57 |
| bench2drive-on-bench2drive | TransFuser++ | Driving Score: 84.21 |
| carla-leaderboard-2-0-on-carla | TF++ (Map Track) | Driving Score: 5.56 Infraction Score: 0.47 Route Completion: 11.82 |
| carla-leaderboard-2-0-on-carla | TF++ | Driving Score: 5.18 Infraction Score: 0.48 Route Completion: 11.34 |
| carla-longest6-on-carla | TransFuser++ WP (TF++WP) | Driving Score: 73 Infraction Score: 0.56 Route Completion: 97 |
| carla-longest6-on-carla | TransFuser++ (TF++) | Driving Score: 69 Infraction Score: 0.72 Route Completion: 94 |
| carla-map-leaderboard-on-carla | Map TF++ | Driving score: 61.17 Infraction penalty: 0.70 Route completion: 81.81 |