4 个月前

EdgeFace:适用于边缘设备的高效人脸识别模型

EdgeFace:适用于边缘设备的高效人脸识别模型

摘要

本文介绍了一种轻量且高效的面部识别网络——EdgeFace,该网络受到EdgeNeXt混合架构的启发。通过有效结合卷积神经网络(CNN)和变压器模型(Transformer)的优势以及低秩线性层,EdgeFace在边缘设备上实现了卓越的面部识别性能。所提出的EdgeFace网络不仅保持了较低的计算成本和紧凑的存储需求,还达到了较高的面部识别精度,使其适合部署在边缘设备上。大量实验在具有挑战性的基准面部数据集上验证了EdgeFace相较于最先进的轻量级模型和深度面部识别模型的有效性和高效性。我们的EdgeFace模型参数量为1.77M,在LFW(99.73%)、IJB-B(92.67%)和IJB-C(94.85%)数据集上取得了当前最佳的结果,优于其他计算复杂度更高的高效模型。用于复现实验的代码将公开发布。

基准测试

基准方法指标
face-recognition-on-cfp-fpEdgeFace - S (g=0.5)
Accuracy: 0.9581
face-recognition-on-lfwEdgeFace - S (g=0.5)
Accuracy: 0.9978
face-recognition-on-lfwEdgeFace - XS (g=0.6)
Accuracy: 0.9973
lightweight-face-recognition-on-agedb-30EdgeFace - XS (g=0.6)
Accuracy: 0.96
MFLOPs: 154
MParams: 1.77
lightweight-face-recognition-on-agedb-30EdgeFace - S (g=0.5)
Accuracy: 0.9693
MFLOPs: 306.11
MParams: 3.65
lightweight-face-recognition-on-calfwEdgeFace - XS (g=0.6)
Accuracy: 0.9528
MFLOPs: 154
MParams: 1.77
lightweight-face-recognition-on-calfwEdgeFace - S (g=0.5)
Accuracy: 0.9571
MFLOPs: 306.11
MParams: 3.65
lightweight-face-recognition-on-cfp-fpEdgeFace - S (g=0.5)
Accuracy: 0.9581
MFLOPs: 306.11
MParams: 3.65
lightweight-face-recognition-on-cfp-fpEdgeFace - XS (g=0.6)
Accuracy: 0.9437
MFLOPs: 154
MParams: 1.77
lightweight-face-recognition-on-cplfwEdgeFace - XS (g=0.6)
Accuracy: 0.9182
MFLOPs: 154
MParams: 1.77
lightweight-face-recognition-on-cplfwEdgeFace - S (g=0.5)
Accuracy: 0.9256
MFLOPs: 306.11
MParams: 3.65
lightweight-face-recognition-on-ijb-bEdgeFace - XS (g=0.6)
MFLOPs: 154
MParams: 1.77
TAR @ FAR=0.01: 0.9267
lightweight-face-recognition-on-ijb-bEdgeFace - S (g=0.5)
MFLOPs: 306.11
MParams: 3.65
TAR @ FAR=0.01: 0.9358
lightweight-face-recognition-on-ijb-cEdgeFace - S (g=0.5)
MFLOPs: 306.11
MParams: 3.65
TAR @ FAR=0.01: 0.9563
lightweight-face-recognition-on-ijb-cEdgeFace - XS (g=0.6)
MFLOPs: 154
MParams: 1.77
TAR @ FAR=0.01: 0.9485
lightweight-face-recognition-on-lfwEdgeFace - XS (g=0.6)
Accuracy: 0.9973
MFLOPs: 154
MParams: 1.77
lightweight-face-recognition-on-lfwEdgeFace - S (g=0.5)
Accuracy: 0.9978
MFLOPs: 306.11
MParams: 3.65

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供
EdgeFace:适用于边缘设备的高效人脸识别模型 | 论文 | HyperAI超神经