
摘要
本文介绍了一种轻量且高效的面部识别网络——EdgeFace,该网络受到EdgeNeXt混合架构的启发。通过有效结合卷积神经网络(CNN)和变压器模型(Transformer)的优势以及低秩线性层,EdgeFace在边缘设备上实现了卓越的面部识别性能。所提出的EdgeFace网络不仅保持了较低的计算成本和紧凑的存储需求,还达到了较高的面部识别精度,使其适合部署在边缘设备上。大量实验在具有挑战性的基准面部数据集上验证了EdgeFace相较于最先进的轻量级模型和深度面部识别模型的有效性和高效性。我们的EdgeFace模型参数量为1.77M,在LFW(99.73%)、IJB-B(92.67%)和IJB-C(94.85%)数据集上取得了当前最佳的结果,优于其他计算复杂度更高的高效模型。用于复现实验的代码将公开发布。
代码仓库
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| face-recognition-on-cfp-fp | EdgeFace - S (g=0.5) | Accuracy: 0.9581 |
| face-recognition-on-lfw | EdgeFace - S (g=0.5) | Accuracy: 0.9978 |
| face-recognition-on-lfw | EdgeFace - XS (g=0.6) | Accuracy: 0.9973 |
| lightweight-face-recognition-on-agedb-30 | EdgeFace - XS (g=0.6) | Accuracy: 0.96 MFLOPs: 154 MParams: 1.77 |
| lightweight-face-recognition-on-agedb-30 | EdgeFace - S (g=0.5) | Accuracy: 0.9693 MFLOPs: 306.11 MParams: 3.65 |
| lightweight-face-recognition-on-calfw | EdgeFace - XS (g=0.6) | Accuracy: 0.9528 MFLOPs: 154 MParams: 1.77 |
| lightweight-face-recognition-on-calfw | EdgeFace - S (g=0.5) | Accuracy: 0.9571 MFLOPs: 306.11 MParams: 3.65 |
| lightweight-face-recognition-on-cfp-fp | EdgeFace - S (g=0.5) | Accuracy: 0.9581 MFLOPs: 306.11 MParams: 3.65 |
| lightweight-face-recognition-on-cfp-fp | EdgeFace - XS (g=0.6) | Accuracy: 0.9437 MFLOPs: 154 MParams: 1.77 |
| lightweight-face-recognition-on-cplfw | EdgeFace - XS (g=0.6) | Accuracy: 0.9182 MFLOPs: 154 MParams: 1.77 |
| lightweight-face-recognition-on-cplfw | EdgeFace - S (g=0.5) | Accuracy: 0.9256 MFLOPs: 306.11 MParams: 3.65 |
| lightweight-face-recognition-on-ijb-b | EdgeFace - XS (g=0.6) | MFLOPs: 154 MParams: 1.77 TAR @ FAR=0.01: 0.9267 |
| lightweight-face-recognition-on-ijb-b | EdgeFace - S (g=0.5) | MFLOPs: 306.11 MParams: 3.65 TAR @ FAR=0.01: 0.9358 |
| lightweight-face-recognition-on-ijb-c | EdgeFace - S (g=0.5) | MFLOPs: 306.11 MParams: 3.65 TAR @ FAR=0.01: 0.9563 |
| lightweight-face-recognition-on-ijb-c | EdgeFace - XS (g=0.6) | MFLOPs: 154 MParams: 1.77 TAR @ FAR=0.01: 0.9485 |
| lightweight-face-recognition-on-lfw | EdgeFace - XS (g=0.6) | Accuracy: 0.9973 MFLOPs: 154 MParams: 1.77 |
| lightweight-face-recognition-on-lfw | EdgeFace - S (g=0.5) | Accuracy: 0.9978 MFLOPs: 306.11 MParams: 3.65 |