4 个月前

基于自适应嵌入和集成的图像去噪扩散模型

基于自适应嵌入和集成的图像去噪扩散模型

摘要

图像去噪是计算摄影中的一个基本问题,其中实现高感知质量与低失真度的要求非常高。当前的方法要么在感知质量上表现不佳,要么存在显著的失真问题。最近,新兴的扩散模型在各种任务中取得了最先进的性能,并展示了在图像去噪方面的巨大潜力。然而,将扩散模型应用于图像去噪并非易事,需要解决几个关键问题。一方面,输入不一致性阻碍了扩散模型与图像去噪之间的联系;另一方面,生成图像与期望的去噪图像之间的内容不一致性引入了失真。为了解决这些问题,我们提出了一种新的策略——用于图像去噪的扩散模型(DMID),通过从去噪的角度理解和重新思考扩散模型来实现这一目标。我们的DMID策略包括一种自适应嵌入方法,该方法将噪声图像嵌入到预训练的无条件扩散模型中,以及一种自适应集成方法,该方法减少了去噪图像中的失真。我们的DMID策略在基于失真的指标和基于感知的指标上均达到了最先进的性能,适用于高斯噪声和真实世界噪声的图像去噪。代码可在https://github.com/Li-Tong-621/DMID 获取。

代码仓库

li-tong-621/dmid
官方
pytorch
GitHub 中提及

基准测试

基准方法指标
color-image-denoising-on-cbsd68-sigma100DMID-d
LPIPS: 0.283
PSNR: 25.96
SSIM: 0.8413
color-image-denoising-on-cbsd68-sigma100DMID-p
LPIPS: 0.208
PSNR: 23.94
SSIM: 0.7840
color-image-denoising-on-cbsd68-sigma15DMID-d
PSNR: 34.45
color-image-denoising-on-cbsd68-sigma150DMID-d
LPIPS: 0.361
PSNR: 24.54
SSIM: 0.8001
color-image-denoising-on-cbsd68-sigma150DMID-p
LPIPS: 0.264
PSNR: 22.47
SSIM: 0.7314
color-image-denoising-on-cbsd68-sigma200DMID-p
LPIPS: 0.312
PSNR: 21.37
SSIM: 0.6842
color-image-denoising-on-cbsd68-sigma200DMID-d
LPIPS: 0.392
PSNR: 23.57
SSIM: 0.7686
color-image-denoising-on-cbsd68-sigma25DMID-d
PSNR: 31.86
color-image-denoising-on-cbsd68-sigma250DMID-d
LPIPS: 0.455
PSNR: 22.88
SSIM: 0.7462
color-image-denoising-on-cbsd68-sigma250DMID-p
LPIPS: 0.352
PSNR: 20.77
SSIM: 0.6610
color-image-denoising-on-cbsd68-sigma50DMID-d (MMSE)
LPIPS: 0.162
PSNR: 28.69
SSIM: 0.9029
color-image-denoising-on-cbsd68-sigma50DMID-p
LPIPS: 0.122
PSNR: 26.63
SSIM: 0.8605
color-image-denoising-on-cbsd68-sigma50DMID-d
PSNR: 28.69
color-image-denoising-on-imagenet-sigma100DMID-p
LPIPS: 0.156
PSNR: 24.61
SSIM: 0.7987
color-image-denoising-on-imagenet-sigma100DMID-d
LPIPS: 0.201
PSNR: 27.00
SSIM: 0.8626
color-image-denoising-on-imagenet-sigma150DMID-p
LPIPS: 0.259
PSNR: 22.94
SSIM: 0.6932
color-image-denoising-on-imagenet-sigma150DMID-d
LPIPS: 0.295
PSNR: 25.39
SSIM: 0.8236
color-image-denoising-on-imagenet-sigma200DMID-p
LPIPS: 0.259
PSNR: 21.56
SSIM: 0.6932
color-image-denoising-on-imagenet-sigma200DMID-d
LPIPS: 0.295
PSNR: 24.25
SSIM: 0.7915
color-image-denoising-on-imagenet-sigma250DMID-d
LPIPS: 0.346
PSNR: 23.44
SSIM: 0.7675
color-image-denoising-on-imagenet-sigma250DMID-p
LPIPS: 0.289
PSNR: 20.87
SSIM: 0.6701
color-image-denoising-on-imagenet-sigma50DMID-d
LPIPS: 0.114
PSNR: 29.9
SSIM: 0.9157
color-image-denoising-on-imagenet-sigma50DMID-p
LPIPS: 0.087
PSNR: 27.59
SSIM: 0.8722
color-image-denoising-on-kodak-sigma50DMID-d
PSNR: 30.14
color-image-denoising-on-kodak24-sigma100DMID-d
LPIPS: 0.274
PSNR: 27.5
SSIM: 0.8682
color-image-denoising-on-kodak24-sigma100DMID-p
LPIPS: 0.211
PSNR: 25.31
SSIM: 0.8107
color-image-denoising-on-kodak24-sigma15DMID-d
PSNR: 35.51
color-image-denoising-on-kodak24-sigma150DMID-d
LPIPS: 0.348
PSNR: 26.08
SSIM: 0.8336
color-image-denoising-on-kodak24-sigma150DMID-p
LPIPS: 0.211
PSNR: 24.06
SSIM: 0.7707
color-image-denoising-on-kodak24-sigma200DMID-d
LPIPS: 0.382
PSNR: 25.08
SSIM: 0.8054
color-image-denoising-on-kodak24-sigma200DMID-p
LPIPS: 0.318
PSNR: 22.99
SSIM: 0.7311
color-image-denoising-on-kodak24-sigma25DMID-d
PSNR: 33.12
color-image-denoising-on-kodak24-sigma250DMID-d
LPIPS: 0.446
PSNR: 24.4
SSIM: 0.7853
color-image-denoising-on-kodak24-sigma250DMID-p
LPIPS: 0.356
PSNR: 22.44
SSIM: 0.7133
color-image-denoising-on-kodak24-sigma50DMID-d(MMSE)
LPIPS: 0.172
PSNR: 30.13
SSIM: 0.9174
color-image-denoising-on-kodak24-sigma50DMID-p
LPIPS: 0.131
PSNR: 27.9
SSIM: 0.8770
color-image-denoising-on-mcmaster-sigma100DMID-p
LPIPS: 0.158
PSNR: 25.37
SSIM: 0.8560
color-image-denoising-on-mcmaster-sigma100DMID-d
LPIPS: 0.206
PSNR: 27.57
SSIM: 0.8990
color-image-denoising-on-mcmaster-sigma15DMID-d
PSNR: 35.72
color-image-denoising-on-mcmaster-sigma150DMID-p
LPIPS: 0.209
PSNR: 23.72
SSIM: 0.8148
color-image-denoising-on-mcmaster-sigma150DMID-d
LPIPS: 0.267
PSNR: 25.89
SSIM: 0.8672
color-image-denoising-on-mcmaster-sigma200DMID-p
LPIPS: 0.252
PSNR: 22.51
SSIM: 0.7816
color-image-denoising-on-mcmaster-sigma200DMID-d
LPIPS: 0.303
PSNR: 24.68
SSIM: 0.8392
color-image-denoising-on-mcmaster-sigma25DMID-d
PSNR: 33.49
color-image-denoising-on-mcmaster-sigma250DMID-d
LPIPS: 0.359
PSNR: 23.81
SSIM: 0.8174
color-image-denoising-on-mcmaster-sigma250DMID-p
LPIPS: 0.290
PSNR: 21.73
SSIM: 0.7553
color-image-denoising-on-mcmaster-sigma50DMID-d(MMSE)
LPIPS: 0.124
SSIM: 0.9396
color-image-denoising-on-mcmaster-sigma50DMID-d
PSNR: 30.51
color-image-denoising-on-mcmaster-sigma50DMID-p
LPIPS: 0.092
PSNR: 28.34
SSIM: 0.9112
color-image-denoising-on-urban100-sigma15-1DMID-d
Average PSNR: 35.26
PSNR: 35.26
color-image-denoising-on-urban100-sigma25DMID-d
PSNR: 33.11
color-image-denoising-on-urban100-sigma50DMID-d
PSNR: 30.28

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供
基于自适应嵌入和集成的图像去噪扩散模型 | 论文 | HyperAI超神经