3 个月前

呼吁反思年龄估计的评估实践:最先进方法的对比分析与统一基准

呼吁反思年龄估计的评估实践:最先进方法的对比分析与统一基准

摘要

由于基准测试流程中存在的不一致性,导致已发表的年龄估计方法结果可靠性不足,这给不同方法之间的比较带来了挑战。以往研究声称,过去十年间通过专用方法实现了持续的性能提升;然而,我们的研究结果对这些说法提出了质疑。本文揭示了当前评估协议中两个看似简单却长期存在的问题,并提出了相应的解决方案。我们对当前最先进的面部年龄估计方法进行了全面的对比分析。令人意外的是,我们发现不同方法之间的性能差异微乎其微,远不及其他因素的影响,如面部对齐质量、面部覆盖范围、图像分辨率、模型架构以及预训练所用数据量等。基于这些发现,我们提出以FaRL作为骨干模型,并在所有公开数据集上验证了其有效性。相关源代码及确切的数据划分已公开发布于GitHub。

代码仓库

paplhjak/facial-age-estimation-benchmark
官方
pytorch
GitHub 中提及

基准测试

基准方法指标
age-estimation-on-afadResNet-50-OR-CNN
MAE: 3.16
age-estimation-on-afadResNet-50-DLDL-v2
MAE: 3.15
age-estimation-on-afadResNet-50-DLDL
MAE: 3.14
age-estimation-on-afadResNet-50-Unimodal-Concentrated
MAE: 3.20
age-estimation-on-afadResNet-50-Cross-Entropy
MAE: 3.14
age-estimation-on-afadResNet-50-Mean-Variance
MAE: 3.16
age-estimation-on-afadResNet-50-Regression
MAE: 3.17
age-estimation-on-afadResNet-50-SORD
MAE: 3.14
age-estimation-on-afadFaRL+MLP
MAE: 3.12
age-estimation-on-agedbResNet-50-DLDL
MAE: 5.80
age-estimation-on-agedbResNet-50-Unimodal-Concentrated
MAE: 5.90
age-estimation-on-agedbResNet-50-DLDL-v2
MAE: 5.80
age-estimation-on-agedbResNet-50-SORD
MAE: 5.81
age-estimation-on-agedbResNet-50-OR-CNN
MAE: 5.78
age-estimation-on-agedbFaRL+MLP
MAE: 5.64
age-estimation-on-agedbResNet-50-Cross-Entropy
MAE: 5.81
age-estimation-on-agedbResNet-50-Regression
MAE: 6.23
age-estimation-on-agedbResNet-50-Mean-Variance
MAE: 5.85
age-estimation-on-cacdResNet-50-Cross-Entropy
MAE: 3.96
age-estimation-on-cacdResNet-50-Regression
MAE: 4.06
age-estimation-on-cacdResNet-50-OR-CNN
MAE: 4.01
age-estimation-on-cacdResNet-50-DLDL-v2
MAE: 3.96
age-estimation-on-cacdResNet-50-SORD
MAE: 3.96
age-estimation-on-cacdResNet-50-Mean-Variance
MAE: 4.07
age-estimation-on-cacdResNet-50-Unimodal-Concentrated
MAE: 4.10
age-estimation-on-cacdFaRL+MLP
MAE: 3.96
age-estimation-on-cacdResNet-50-DLDL
MAE: 3.96
age-estimation-on-chalearn-2016FaRL+MLP
MAE: 3.38
age-estimation-on-morph-album2-se-1ResNet-50-DLDL
MAE: 2.81
age-estimation-on-morph-album2-se-1ResNet-50-Cross-Entropy
MAE: 2.81
age-estimation-on-morph-album2-se-1ResNet-50-DLDL-v2
MAE: 2.82
age-estimation-on-morph-album2-se-1ResNet-50-SORD
MAE: 2.81
age-estimation-on-morph-album2-se-1ResNet-50-Regression
MAE: 2.83
age-estimation-on-morph-album2-se-1ResNet-50-Mean-Variance
MAE: 2.83
age-estimation-on-morph-album2-se-1ResNet-50-OR-CNN
MAE: 2.83
age-estimation-on-morph-album2-se-1FaRL+MLP
MAE: 3.04
age-estimation-on-morph-album2-se-1ResNet-50-Unimodal-Concentrated
MAE: 2.78
age-estimation-on-utkfaceResNet-50-OR-CNN
MAE: 4.40
age-estimation-on-utkfaceResNet-50-Cross-Entropy
MAE: 4.38
age-estimation-on-utkfaceResNet-50-SORD
MAE: 4.36
age-estimation-on-utkfaceResNet-50-DLDL
MAE: 4.39
age-estimation-on-utkfaceResNet-50-DLDL-v2
MAE: 4.42
age-estimation-on-utkfaceFaRL+MLP
MAE: 3.87
age-estimation-on-utkfaceResNet-50-Regression
MAE: 4.72
age-estimation-on-utkfaceResNet-50-Unimodal-Concentrated
MAE: 4.47
age-estimation-on-utkfaceResNet-50-Mean-Variance
MAE: 4.42

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供
呼吁反思年龄估计的评估实践:最先进方法的对比分析与统一基准 | 论文 | HyperAI超神经