Yuki KondoNorimichi UkitaTakayuki YamaguchiHao-Yu HouMu-Yi ShenChia-Chi HsuEn-Ming HuangYu-Chen HuangYu-Cheng XiaChien-Yao WangChun-Yi LeeDa HuoMarc A. KastnerTingwei LiuYasutomo KawanishiTakatsugu HirayamaTakahiro KomamizuIchiro IdeYosuke ShinyaXinyao LiuGuang LiangSyusuke Yasui

摘要
小目标检测(Small Object Detection, SOD)是一项重要的机器视觉研究课题,主要原因在于:(i)众多实际应用场景需要对远距离目标进行检测;(ii)由于小目标在图像中通常呈现噪声大、模糊且信息量少的特征,因此SOD任务具有较高的技术挑战性。本文提出了一种新的SOD数据集——小目标检测用于鸟类识别(Small Object Detection for Spotting Birds, SOD4SB),该数据集包含39,070张图像,涵盖137,121个鸟类实例。本文详细介绍了基于SOD4SB数据集所设立的挑战赛内容。共有223支参赛团队参与了此次挑战赛。本文简要概述了获奖方法的核心思想与技术特点。目前,该数据集、基线代码以及面向公开测试集的评估网站均已公开发布,供学术界和工业界免费使用。
代码仓库
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| small-object-detection-on-sod4sb-private-test | E2 method (Normalized Gaussian Wasserstein Distance + Switch Hard Augmentation + Multi scale train + Weight Moving Average + CenterNet + VarifocalNet) | AP50: 22.1 |
| small-object-detection-on-sod4sb-private-test | DL method (YOLOv8 + Ensamble) | AP50: 22.9 |
| small-object-detection-on-sod4sb-public-test-1 | DL method (YOLOv8 + Ensamble) | AP50: 73.1 |
| small-object-detection-on-sod4sb-public-test-1 | E2 method (Normalized Gaussian Wasserstein Distance + Switch Hard Augmentation + Multi scale train + Weight Moving Average + CenterNet + VarifocalNet) | AP50: 69.6 |