
摘要
我们研究了点云配准中提取精确对应点的问题。近期的一些无关键点方法通过绕过重复关键点的检测,展示了巨大的潜力,尤其是在重叠度较低的情况下,这种检测尤为困难。这些方法在降采样的超点上寻找对应关系,然后将这些对应关系传播到密集点上。超点的匹配基于其邻域补丁是否重叠。这种稀疏且松散的匹配需要上下文特征来捕捉点云的几何结构。为此,我们提出了几何变换器(Geometric Transformer),简称GeoTransformer,用于学习鲁棒的超点匹配几何特征。该模型编码了成对距离和三元组角度,使其对刚性变换具有不变性,并在低重叠情况下表现出鲁棒性。这种简洁的设计达到了令人惊讶的高匹配精度,使得在估计对齐变换时无需使用RANSAC算法,从而实现了100倍的加速。我们在涵盖室内、室外、合成、多视图和非刚性场景的丰富基准数据集上进行了广泛的实验,验证了GeoTransformer的有效性。特别是在具有挑战性的3DLoMatch基准数据集上,我们的方法将内点比例提高了18~31个百分点,并将配准召回率提高了超过7个百分点。我们的代码和模型可在以下网址获取:\url{https://github.com/qinzheng93/GeoTransformer}。
代码仓库
qinzheng93/geotransformer
官方
pytorch
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| point-cloud-registration-on-eth-trained-on | GeoTransformer | Recall (30cm, 5 degrees): 4.91 |
| point-cloud-registration-on-fp-o-e | GeoTransformer | RRE (degrees): 2.30 RTE (cm): 1.57 Recall (3cm, 10 degrees): 63.94 |
| point-cloud-registration-on-fp-o-h | GeoTransformer | RRE (degrees): 2.57 RTE (cm): 2.22 Recall (3cm, 10 degrees): 2.64 |
| point-cloud-registration-on-fp-o-m | GeoTransformer | RRE (degrees): 2.45 RTE (cm): 1.94 Recall (3cm, 10 degrees): 22.07 |
| point-cloud-registration-on-fp-r-e | GeoTransformer | RRE (degrees): 2.29 RTE (cm): 1.57 Recall (3cm, 10 degrees): 64.12 |
| point-cloud-registration-on-fp-r-h | GeoTransformer | RRE (degrees): 0.47 RTE (cm): 1.69 Recall (3cm, 10 degrees): 47.75 |
| point-cloud-registration-on-fp-r-m | GeoTransformer | RRE (degrees): 2.26 RTE (cm): 1.63 Recall (3cm, 10 degrees): 55.93 |
| point-cloud-registration-on-fp-t-e | GeoTransformer | RRE (degrees): 2.32 RTE (cm): 1.59 Recall (3cm, 10 degrees): 66.25 |
| point-cloud-registration-on-fp-t-h | GeoTransformer | RRE (degrees): 2.27 RTE (cm): 1.57 Recall (3cm, 10 degrees): 64.18 |
| point-cloud-registration-on-fp-t-m | GeoTransformer | RRE (degrees): 2.29 RTE (cm): 1.58 Recall (3cm, 10 degrees): 64.29 |
| point-cloud-registration-on-kitti-trained-on | GeoTransformer | Success Rate: 67.93 |
| point-cloud-registration-on-rotkitti | GeoTransformer | RR@(1,0.1): 50.1 RR@(1.5,0.3): 78.5 |