
摘要
近期发布的长程图基准(Long-Range Graph Benchmark, LRGB)由Dwivedi等人于2022年提出,引入了一系列依赖于顶点之间长程交互的图学习任务。实证研究表明,在这些任务中,图变换器(Graph Transformers)显著优于消息传递图神经网络(Message Passing GNNs, MPGNNs)。在本文中,我们仔细重新评估了多个MPGNN基线模型以及Rampášek等人于2022年提出的图变换器GPS。通过严格的实证分析,我们证明了由于次优的超参数选择,所报告的性能差距被高估了。值得注意的是,在多个数据集上,经过基本的超参数优化后,性能差距完全消失。此外,我们讨论了缺乏特征归一化对LRGB视觉数据集的影响,并指出了LRGB链接预测指标的一个错误实现。本文的主要目标是在图机器学习社区内建立更高的实证严谨标准。
代码仓库
Fedzbar/laser-release
pytorch
GitHub 中提及
toenshoff/lrgb
官方
pytorch
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| graph-classification-on-peptides-func | GatedGCN-tuned | AP: 0.6765±0.0047 |
| graph-classification-on-peptides-func | GCN-tuned | AP: 0.6860±0.0050 |
| graph-classification-on-peptides-func | GINE-tuned | AP: 0.6621±0.0067 |
| graph-classification-on-peptides-func | GPS-tuned | AP: 0.6534±0.0091 |
| graph-regression-on-peptides-struct | GatedGCN-tuned | MAE: 0.2477±0.0009 |
| graph-regression-on-peptides-struct | GCN-tuned | MAE: 0.2460±0.0007 |
| graph-regression-on-peptides-struct | GINE-tuned | MAE: 0.2473±0.0017 |
| graph-regression-on-peptides-struct | GPS-tuned | MAE: 0.2509±0.0014 |
| link-prediction-on-pcqm-contact | GPS-tuned | MRR: 0.3498±0.0005 MRR-ext-filtered: 0.4703±0.0014 |
| link-prediction-on-pcqm-contact | GINE-tuned | MRR: 0.3509±0.0006 MRR-ext-filtered: 0.4617±0.0005 |
| link-prediction-on-pcqm-contact | GatedGCN-tuned | MRR: 0.3495±0.0010 MRR-ext-filtered: 0.4670±0.0004 |
| link-prediction-on-pcqm-contact | GCN-tuned | MRR: 0.3424±0.0007 MRR-ext-filtered: 0.4526±0.0006 |
| node-classification-on-coco-sp | GatedGCN-tuned | macro F1: 0.2922±0.0018 |
| node-classification-on-coco-sp | GINE-tuned | macro F1: 0.2125±0.0009 |
| node-classification-on-coco-sp | GPS-tuned | macro F1: 0.3884±0.0055 |
| node-classification-on-coco-sp | GCN-tuned | macro F1: 0.1338±0.0007 |
| node-classification-on-pascalvoc-sp-1 | GINE-tuned | macro F1: 0.2718±0.0054 |
| node-classification-on-pascalvoc-sp-1 | GCN-tuned | macro F1: 0.2078±0.0031 |
| node-classification-on-pascalvoc-sp-1 | GPS-tuned | macro F1: 0.4440±0.0065 |
| node-classification-on-pascalvoc-sp-1 | GatedGCN-tuned | macro F1: 0.3880±0.0040 |