
摘要
在开放世界环境中部署的机器学习模型,检测分布外(Out-of-Distribution, OOD)样本至关重要。基于分类器的评分方法因其具备细粒度检测能力,已成为OOD检测的标准手段。然而,这类评分方法常存在过度自信问题,导致远离分布内(In-Distribution, ID)区域的OOD样本被错误分类。为应对这一挑战,本文提出一种名为最近邻引导(Nearest Neighbor Guidance, NNGuide)的方法,通过引导分类器评分尊重数据流形的边界几何结构,有效缓解OOD样本的过度自信问题,同时保持分类器评分原有的细粒度检测能力。我们在多种设置下,针对ImageNet OOD检测基准进行了大量实验,涵盖ID数据发生自然分布偏移的场景。实验结果表明,NNGuide显著提升了基础检测评分的性能,在AUROC、FPR95和AUPR三项指标上均达到当前最优水平。相关代码已公开,地址为:\url{https://github.com/roomo7time/nnguide}。
代码仓库
jingkang50/openood
官方
pytorch
GitHub 中提及
roomo7time/nnguide
官方
pytorch
GitHub 中提及
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| out-of-distribution-detection-on-imagenet-1k-1 | NNGuide-ViM (ViT-B/16) | AUROC: 92.96 FPR95: 33.10 |
| out-of-distribution-detection-on-imagenet-1k-10 | NNGuide (RegNet) | AUROC: 95.82 FPR95: 17.00 Latency, ms: 31.00 |
| out-of-distribution-detection-on-imagenet-1k-10 | NNGuide (ResNet50 w/ ReAct) | AUROC: 96.11 FPR95: 17.27 Latency, ms: 11.10 |
| out-of-distribution-detection-on-imagenet-1k-11 | NNGuide (ResNet50 w/ ReAct) | AUROC: 92.49 FPR95: 35.1 Latency, ms: 11.10 |
| out-of-distribution-detection-on-imagenet-1k-11 | NNGuide (RegNet) | AUROC: 97.73 FPR95: 10.79 Latency, ms: 31.00 |
| out-of-distribution-detection-on-imagenet-1k-12 | NNGuide (RegNet) | AUROC: 95.42 FPR95: 17.97 |
| out-of-distribution-detection-on-imagenet-1k-12 | NNGuide (ResNet50 w/ ReAct) | AUROC: 95.45 FPR95: 19.72 |
| out-of-distribution-detection-on-imagenet-1k-3 | NNGuide (ResNet50 w/ ReAct) | AUROC: 97.7 FPR95: 11.12 Latency, ms: 11.10 |
| out-of-distribution-detection-on-imagenet-1k-3 | NNGuide (RegNet) | AUROC: 99.57 FPR95: 1.83 Latency, ms: 31.00 |
| out-of-distribution-detection-on-imagenet-1k-8 | NNGuide (RegNet) | AUROC: 94.43 FPR95: 21.58 |
| out-of-distribution-detection-on-imagenet-1k-9 | NNGuide (RegNet) | AUROC: 91.87 FPR95: 31.47 |