
摘要
现代深度学习系统判断某一样本是否属于其知识范围的能力至关重要且具有根本意义。本文深入探讨并分析了当前最先进的分布外(Out-of-Distribution, OOD)检测方法——极简激活形态调整(Activation Shaping, ASH)。我们发现,激活剪枝(activation pruning)会显著损害OOD检测性能,而激活缩放(activation scaling)则能有效提升检测效果。为此,我们提出SCALE——一种简单而高效的后处理网络增强方法,可在不牺牲分布内(In-Distribution, ID)准确率的前提下,实现当前最优的OOD检测性能。通过在训练过程中引入缩放机制以捕捉样本的ID特征,我们进一步提出中间张量形态调整(Intermediate Tensor Shaping, ISH),这是一种轻量级的训练阶段OOD检测增强方法。在OpenOOD v1.5 ImageNet-1K基准测试中,我们的方法在近分布外(near-OOD)和远分布外(far-OOD)数据集上分别实现了AUROC分数提升+1.85%和+0.74%。相关代码与模型已开源,地址为:https://github.com/kai422/SCALE。
代码仓库
kai422/scale
官方
pytorch
GitHub 中提及
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| out-of-distribution-detection-on-far-ood | SCALE (ResNet50) | AUROC: 96.53 FPR@95: 16.53 ID ACC: 76.18 |
| out-of-distribution-detection-on-far-ood | ISH (ResNet50) | AUROC: 96.79 FPR@95: 15.62 ID ACC: 76.74 |
| out-of-distribution-detection-on-imagenet-1k-10 | SCALE (ResNet50) | AUROC: 97.37 FPR95: 12.93 Latency, ms: 11.27 |
| out-of-distribution-detection-on-imagenet-1k-12 | SCALE (ResNet50) | AUROC: 95.71 FPR95: 20.05 |
| out-of-distribution-detection-on-imagenet-1k-3 | SCALE (ResNet50) | AUROC: 98.17 FPR95: 9.5 Latency, ms: 11.27 |
| out-of-distribution-detection-on-imagenet-1k-8 | SCALE (ResNet50) | AUROC: 95.02 FPR95: 23.27 |
| out-of-distribution-detection-on-imagenet-1k-9 | SCALE (ResNet50) | AUROC: 92.26 FPR95: 34.51 |
| out-of-distribution-detection-on-near-ood | SCALE (ResNet50) | AUROC: 81.36 FPR@95: 59.76 ID ACC: 76.18 |
| out-of-distribution-detection-on-near-ood | ISH (ResNet50) | AUROC: 84.01 FPR@95: 55.73 ID ACC: 76.74 |