4 个月前

Mistral 7B

Mistral 7B

摘要

我们介绍了Mistral 7B v0.1,这是一款具有70亿参数的语言模型,旨在实现卓越的性能和效率。Mistral 7B在所有评估基准上均优于Llama 2 13B,并且在推理、数学和代码生成方面超越了Llama 1 34B。我们的模型采用了分组查询注意力(Grouped-Query Attention, GQA)以加快推理速度,并结合滑动窗口注意力(Sliding Window Attention, SWA)有效处理任意长度的序列,同时降低了推理成本。此外,我们还提供了一款经过微调以遵循指令的模型——Mistral 7B -- Instruct,该模型在人类和自动化基准测试中均超过了Llama 2 13B -- Chat模型。我们的模型均在Apache 2.0许可证下发布。

代码仓库

mgmalek/efficient_cross_entropy
pytorch
GitHub 中提及
facebookresearch/fairseq2
pytorch
GitHub 中提及
ninglab/ecellm
pytorch
GitHub 中提及

基准测试

基准方法指标
answerability-prediction-on-peerqaMistral-IT-v02-7B-32k
Macro F1: 0.4703
arithmetic-reasoning-on-gsm8kMistral 7B (maj@8)
Accuracy: 52.2
Parameters (Billion): 7
code-generation-on-mbppMistral 7B (3-shot)
Accuracy: 47.5
common-sense-reasoning-on-arc-challengeMistral 7B (0-shot)
Accuracy: 55.5
common-sense-reasoning-on-arc-easyMistral 7B (0-shot)
Accuracy: 80.0
common-sense-reasoning-on-winograndeMistral 7B (0-shot)
Accuracy: 75.3
math-word-problem-solving-on-mathMistral 7B (maj@4)
Accuracy: 13.1
Parameters (Billions): 7
multi-task-language-understanding-on-mmluMistral 7B (5-shot)
Average (%): 60.1
question-answering-on-natural-questionsMistral 7B (5-shot)
EM: 28.8
question-answering-on-peerqaMistral-v02-7B-32k
AlignScore: 0.0827
Prometheus-2 Answer Correctness: 3.4245
Rouge-L: 0.1922
question-answering-on-piqaMistral 7B (0-shot)
Accuracy: 83.0
question-answering-on-triviaqaMistral 7B (5-shot)
EM: 69.9
zero-shot-video-question-answer-on-intentqaMistral (7B)
Accuracy: 50.4
zero-shot-video-question-answer-on-next-gqaMistral (7B)
Acc@GQA: 9.2
zero-shot-video-question-answer-on-next-qaMistral (7B)
Accuracy: 51.1

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供
Mistral 7B | 论文 | HyperAI超神经