4 个月前

InternVL:扩展视觉基础模型并对其对齐以适应通用视觉-语言任务

InternVL:扩展视觉基础模型并对其对齐以适应通用视觉-语言任务

摘要

大型语言模型(LLMs)的指数级增长为多模态AGI系统开辟了众多可能性。然而,视觉及视觉-语言基础模型的发展步伐并未跟上LLMs,而这些模型同样是构建多模态AGI的关键组成部分。在本研究中,我们设计了一种大规模视觉-语言基础模型(InternVL),该模型将视觉基础模型扩展至60亿参数,并利用来自不同来源的网络规模图像-文本数据逐步与LLM对齐。此模型可广泛应用于32个通用的视觉-语言基准测试,包括图像级或像素级识别等视觉感知任务,以及零样本图像/视频分类、零样本图像/视频-文本检索等视觉-语言任务,并且可以与LLM结合创建多模态对话系统。它具备强大的视觉能力,可以作为ViT-22B的良好替代方案。我们希望本研究能够为多模态大模型的发展做出贡献。代码和模型可在https://github.com/OpenGVLab/InternVL 获取。

代码仓库

opengvlab/internvl-mmdetseg
pytorch
GitHub 中提及
opengvlab/internvl
官方
pytorch
GitHub 中提及

基准测试

基准方法指标
image-retrieval-on-flickr30k-cnInternVL-G-FT
R@1: 85.9
R@10: 97.1
R@5: 98.7
image-retrieval-on-flickr30k-cnInternVL-C-FT
R@1: 85.2
R@10: 97.0
R@5: 98.5
image-to-text-retrieval-on-flickr30kInternVL-G-FT (finetuned, w/o ranking)
Recall@1: 97.9
Recall@10: 100
Recall@5: 100
image-to-text-retrieval-on-flickr30kInternVL-C-FT (finetuned, w/o ranking)
Recall@1: 97.2
Recall@10: 100
Recall@5: 100
mmr-total-on-mrr-benchmarkInternVL2-8B
Total Column Score: 368
mmr-total-on-mrr-benchmarkInternVL2-1B
Total Column Score: 237
visual-question-answering-on-vqa-v2-test-devInternVL-C
Accuracy: 81.2
zero-shot-cross-modal-retrieval-on-coco-2014InternVL-C
Image-to-text R@1: 70.6
Image-to-text R@10: 93.5
Image-to-text R@5: 89.0
Text-to-image R@1: 54.1
Text-to-image R@10: 84.6
Text-to-image R@5: 77.3
zero-shot-cross-modal-retrieval-on-coco-2014InternVL-G
Image-to-text R@1: 74.9
Image-to-text R@10: 95.2
Image-to-text R@5: 91.3
Text-to-image R@1: 58.6
Text-to-image R@10: 88.0
Text-to-image R@5: 81.3
zero-shot-cross-modal-retrieval-on-flickr30kInternVL-G
Image-to-text R@1: 95.7
Image-to-text R@10: 99.9
Image-to-text R@5: 99.7
Text-to-image R@1: 85.0
Text-to-image R@10: 98.6
Text-to-image R@5: 97.0
zero-shot-cross-modal-retrieval-on-flickr30kInternVL-C
Image-to-text R@1: 94.7
Image-to-text R@10: 99.9
Image-to-text R@5: 99.6
Text-to-image R@1: 81.7
Text-to-image R@10: 98.2
Text-to-image R@5: 96.0
zero-shot-transfer-image-classification-on-1InternVL-C
Accuracy (Private): 83.2
zero-shot-transfer-image-classification-on-17InternVL-C
Top 1 Accuracy: 95.3
zero-shot-transfer-image-classification-on-3InternVL-C
Accuracy (Private): 77.3
zero-shot-transfer-image-classification-on-5InternVL-C
Accuracy (Private): 83.8
zero-shot-transfer-image-classification-on-6InternVL-C
Accuracy (Private): 80.6
zero-shot-transfer-image-classification-on-8InternVL-C
Accuracy (Private): 73.9
zero-shot-transfer-image-classification-on-cnInternVL-C
Accuracy (Private): 64.5
zero-shot-video-retrieval-on-msr-vtt-fullInternVL-C
text-to-video R@1: 44.7
text-to-video R@10: 78.4
text-to-video R@5: 68.2
video-to-text R@1: 40.2
video-to-text R@10: 74.1
video-to-text R@5: 63.1
zero-shot-video-retrieval-on-msr-vtt-fullInternVL-G
text-to-video R@1: 46.3
text-to-video R@10: 79.6
text-to-video R@5: 70.5
video-to-text R@1: 42.4
video-to-text R@10: 75.4
video-to-text R@5: 65.9

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供
InternVL:扩展视觉基础模型并对其对齐以适应通用视觉-语言任务 | 论文 | HyperAI超神经