4 个月前

双边参考高分辨率二值图像分割

双边参考高分辨率二值图像分割

摘要

我们提出了一种新的双边参考框架(BiRefNet),用于高分辨率二值图像分割(DIS)。该框架包含两个核心组件:定位模块(LM)和重建模块(RM),其中我们提出了双边参考(BiRef)。定位模块利用全局语义信息辅助目标定位。在重建模块中,我们利用双边参考进行重建过程,其中图像的层次化块提供源参考,而梯度图则作为目标参考。这些组件协同工作,生成最终的预测图。此外,我们引入了辅助梯度监督机制,以增强对细节更精细区域的关注。为进一步提高地图质量和训练过程,我们还详细介绍了针对二值图像分割的实际训练策略。为了验证我们的方法具有广泛的适用性,我们在四个任务上进行了大量实验,结果表明BiRefNet表现出显著的性能,在所有基准测试中均优于特定任务的最先进方法。我们的代码已发布在 https://github.com/ZhengPeng7/BiRefNet。

代码仓库

zhengpeng7/birefnet
官方
pytorch
GitHub 中提及

基准测试

基准方法指标
camouflaged-object-segmentation-on-camoBiRefNet
MAE: 0.030
S-Measure: 0.904
Weighted F-Measure: 0.890
camouflaged-object-segmentation-on-chameleonBiRefNet
MAE: 0.015
S-measure: 0.932
weighted F-measure: 0.914
camouflaged-object-segmentation-on-codBiRefNet
MAE: 0.014
S-Measure: 0.913
Weighted F-Measure: 0.874
camouflaged-object-segmentation-on-nc4kBiRefNet
MAE: 0.023
S-measure: 0.914
weighted F-measure: 0.894
dichotomous-image-segmentation-on-dis-te1BiRefNet
E-measure: 0.908
HCE: 106
MAE: 0.038
S-Measure: 0.882
max F-Measure: 0.855
weighted F-measure: 0.814
dichotomous-image-segmentation-on-dis-te2BiRefNet
E-measure: 0.935
HCE: 265
MAE: 0.035
S-Measure: 0.904
max F-Measure: 0.898
weighted F-measure: 0.863
dichotomous-image-segmentation-on-dis-te3BiRefNet
E-measure: 0.952
HCE: 573
MAE: 0.030
S-Measure: 0.918
max F-Measure: 0.923
weighted F-measure: 0.891
dichotomous-image-segmentation-on-dis-te4BiRefNet
E-measure: 0.937
HCE: 2746
MAE: 0.040
S-Measure: 0.898
max F-Measure: 0.900
weighted F-measure: 0.861
dichotomous-image-segmentation-on-dis-vdBiRefNet
E-measure: 0.928
HCE: 1006
MAE: 0.038
S-Measure: 0.898
max F-Measure: 0.889
weighted F-measure: 0.853
rgb-salient-object-detection-on-davis-sBiRefNet (DUTS, HRSOD)
F-measure: 0.976
MAE: 0.006
S-measure: 0.973
rgb-salient-object-detection-on-davis-sBiRefNet (DUTS, HRSOD, UHRSD)
F-measure: 0.979
MAE: 0.006
S-measure: 0.975
rgb-salient-object-detection-on-davis-sBiRefNet (DUTS)
F-measure: 0.966
MAE: 0.008
S-measure: 0.967
rgb-salient-object-detection-on-davis-sBiRefNet (HRSOD, UHRSD)
F-measure: 0.980
MAE: 0.006
S-measure: 0.976
rgb-salient-object-detection-on-davis-sBiRefNet (DUTS, UHRSD)
F-measure: 0.977
MAE: 0.006
S-measure: 0.975
rgb-salient-object-detection-on-hrsodBiRefNet (DUTS, UHRSD)
MAE: 0.014
S-Measure: 0.959
max F-Measure: 0.958
rgb-salient-object-detection-on-hrsodBiRefNet (DUTS, HRSOD)
MAE: 0.011
S-Measure: 0.962
max F-Measure: 0.963
rgb-salient-object-detection-on-hrsodBiRefNet (DUTS)
MAE: 0.014
S-Measure: 0.957
max F-Measure: 0.958
rgb-salient-object-detection-on-hrsodBiRefNet (HRSOD, UHRSD)
MAE: 0.016
S-Measure: 0.956
max F-Measure: 0.953
rgb-salient-object-detection-on-hrsodBiRefNet (DUTS, HRSOD, UHRSD)
MAE: 0.013
S-Measure: 0.962
max F-Measure: 0.961
rgb-salient-object-detection-on-uhrsdBiRefNet (HRSOD, UHRSD)
MAE: 0.019
S-Measure: 0.952
max F-Measure: 0.958
rgb-salient-object-detection-on-uhrsdBiRefNet (DUTS, UHRSD)
MAE: 0.019
S-Measure: 0.952
max F-Measure: 0.960
rgb-salient-object-detection-on-uhrsdBiRefNet (DUTS, HRSOD)
MAE: 0.024
S-Measure: 0.937
max F-Measure: 0.942
rgb-salient-object-detection-on-uhrsdBiRefNet (DUTS, HRSOD, UHRSD)
MAE: 0.016
S-Measure: 0.957
max F-Measure: 0.963
rgb-salient-object-detection-on-uhrsdBiRefNet (DUTS)
MAE: 0.030
S-Measure: 0.931
max F-Measure: 0.933
salient-object-detection-on-dut-omronBiRefNet (HRSOD, UHRSD)
F-measure: 0.810
MAE: 0.040
S-Measure: 0.864
Weighted F-Measure: 0.790
mean E-Measure: 0.879
mean F-Measure: 0.801
salient-object-detection-on-dut-omronBiRefNet (DUTS, UHRSD)
F-measure: 0.837
MAE: 0.036
S-Measure: 0.881
Weighted F-Measure: 0.815
mean E-Measure: 0.896
mean F-Measure: 0.825
salient-object-detection-on-dut-omronBiRefNet (DUTS, HRSOD)
F-measure: 0.818
MAE: 0.040
S-Measure: 0.868
Weighted F-Measure: 0.800
mean E-Measure: 0.882
mean F-Measure: 0.809
salient-object-detection-on-dut-omronBiRefNet (DUTS, HRSOD, UHRSD)
F-measure: 0.839
MAE: 0.038
S-Measure: 0.882
Weighted F-Measure: 0.815
mean E-Measure: 0.896
mean F-Measure: 0.825
salient-object-detection-on-dut-omronBiRefNet (DUTS)
F-measure: 0.813
MAE: 0.040
S-Measure: 0.868
Weighted F-Measure: 0.792
mean E-Measure: 0.878
mean F-Measure: 0.802
salient-object-detection-on-duts-teBiRefNet (DUTS, UHRSD)
MAE: 0.018
S-Measure: 0.942
Weighted F-Measure: 0.919
max F-measure: 0.942
mean E-Measure: 0.961
mean F-Measure: 0.925
salient-object-detection-on-duts-teBiRefNet (DUTS)
MAE: 0.019
S-Measure: 0.939
Weighted F-Measure: 0.913
max F-measure: 0.937
mean E-Measure: 0.958
mean F-Measure: 0.919
salient-object-detection-on-duts-teBiRefNet (DUTS, HRSOD, UHRSD)
MAE: 0.018
S-Measure: 0.944
Weighted F-Measure: 0.920
max F-measure: 0.943
mean E-Measure: 0.962
mean F-Measure: 0.925
salient-object-detection-on-duts-teBiRefNet (DUTS, HRSOD)
MAE: 0.018
S-Measure: 0.938
Weighted F-Measure: 0.918
max F-measure: 0.935
mean E-Measure: 0.960
mean F-Measure: 0.923
salient-object-detection-on-duts-teBiRefNet (HRSOD, UHRSD)
MAE: 0.020
S-Measure: 0.933
Weighted F-Measure: 0.907
max F-measure: 0.928
mean E-Measure: 0.954
mean F-Measure: 0.913

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供
双边参考高分辨率二值图像分割 | 论文 | HyperAI超神经