4 个月前

光学湍流建模的有效基准

光学湍流建模的有效基准

摘要

光学湍流对通信、定向能和成像系统构成了重大挑战,尤其是在大气边界层中。光学湍流强度的有效建模对于这些系统的开发和部署至关重要。然而,由于缺乏标准评估工具,特别是长期数据集、建模任务、评估指标和基准模型,导致不同方法和模型之间的有效比较变得困难。这不仅降低了结果的可重现性,还加剧了对局部微气候的过拟合问题。通过评估指标来表征性能可以为预测光学湍流强度的模型适用性提供一些见解,但这些指标不足以理解模型的相对质量。为此,我们引入了 \texttt{otbench} 包,这是一个用于严格开发和评估光学湍流强度预测模型的 Python 工具包。该工具包提供了一致的接口,用于在多种基准任务和数据集上评估光学湍流模型。 \texttt{otbench} 包含了一系列基准模型,包括统计模型、数据驱动模型和深度学习模型(deep learning models),以帮助理解不同模型之间的相对质量。此外,\texttt{otbench} 还支持添加新的数据集、任务和评估指标。该工具包可在 \url{https://github.com/cdjellen/otbench} 获取。

代码仓库

基准测试

基准方法指标
time-series-forecasting-on-mlo-cn2Minute Climatology
RMSE: 0.551
time-series-forecasting-on-mlo-cn2GBRT
RMSE: 0.428
time-series-forecasting-on-mlo-cn2Mean Window Forecast
RMSE: 0.481
time-series-forecasting-on-mlo-cn2Linear Forecast
RMSE: 0.930
time-series-forecasting-on-mlo-cn2Persistence
RMSE: 1.227
time-series-forecasting-on-mlo-cn2RNN
RMSE: 0.581
time-series-forecasting-on-mlo-cn2Climatology
RMSE: 0.658
time-series-forecasting-on-usna-cn2-shortMinute Climatology
RMSE: 0.453
time-series-forecasting-on-usna-cn2-shortGBRT
RMSE: 0.160
time-series-forecasting-on-usna-cn2-shortRNN
RMSE: 0.187
time-series-forecasting-on-usna-cn2-shortPersistence
RMSE: 0.821
time-series-forecasting-on-usna-cn2-shortMean Window Forecast
RMSE: 0.182
time-series-regression-on-mlo-cn2Climatology
RMSE: 0.661
time-series-regression-on-mlo-cn2RNN
RMSE: 0.336
time-series-regression-on-mlo-cn2Minute Climatology
RMSE: 0.504
time-series-regression-on-mlo-cn2GBRT
RMSE: 0.212
time-series-regression-on-mlo-cn2Persistence
RMSE: 1.209
time-series-regression-on-usna-cn2-long-termMacro Meteorological
RMSE: 1.217
time-series-regression-on-usna-cn2-long-termPersistence
RMSE: 1.208
time-series-regression-on-usna-cn2-long-termHybrid Air-Water Temperature Difference
RMSE: 0.458
time-series-regression-on-usna-cn2-long-termGBRT
RMSE: 1.340
time-series-regression-on-usna-cn2-long-termRNN
RMSE: 0.530
time-series-regression-on-usna-cn2-long-termOffshore Macro Meteorological
RMSE: 0.675
time-series-regression-on-usna-cn2-long-termClimatology
RMSE: 0.632
time-series-regression-on-usna-cn2-long-termAir-Water Temperature Difference
RMSE: 1.046
time-series-regression-on-usna-cn2-long-termMinute Climatology
RMSE: 0.625
time-series-regression-on-usna-cn2-shortRNN
RMSE: 0.375
time-series-regression-on-usna-cn2-shortMinute Climatology
RMSE: 0.452
time-series-regression-on-usna-cn2-shortAir-Water Temperature Difference
RMSE: 0.910
time-series-regression-on-usna-cn2-shortPersistence
RMSE: 0.758
time-series-regression-on-usna-cn2-shortClimatology
RMSE: 0.480
time-series-regression-on-usna-cn2-shortGBRT
RMSE: 0.299
time-series-regression-on-usna-cn2-shortHybrid Air-Water Temperature Difference
RMSE: 0.303
time-series-regression-on-usna-cn2-shortOffshore Macro Meteorological
RMSE: 0.178
time-series-regression-on-usna-cn2-shortLinear Forecast
RMSE: 0.358
time-series-regression-on-usna-cn2-shortMacro Meteorological
RMSE: 0.864

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供
光学湍流建模的有效基准 | 论文 | HyperAI超神经